Image that reads Space Place and links to spaceplace.nasa.gov.

Is Time Travel Possible?

We all travel in time! We travel one year in time between birthdays, for example. And we are all traveling in time at approximately the same speed: 1 second per second.

We typically experience time at one second per second. Credit: NASA/JPL-Caltech

NASA's space telescopes also give us a way to look back in time. Telescopes help us see stars and galaxies that are very far away . It takes a long time for the light from faraway galaxies to reach us. So, when we look into the sky with a telescope, we are seeing what those stars and galaxies looked like a very long time ago.

However, when we think of the phrase "time travel," we are usually thinking of traveling faster than 1 second per second. That kind of time travel sounds like something you'd only see in movies or science fiction books. Could it be real? Science says yes!

Image of galaxies, taken by the Hubble Space Telescope.

This image from the Hubble Space Telescope shows galaxies that are very far away as they existed a very long time ago. Credit: NASA, ESA and R. Thompson (Univ. Arizona)

How do we know that time travel is possible?

More than 100 years ago, a famous scientist named Albert Einstein came up with an idea about how time works. He called it relativity. This theory says that time and space are linked together. Einstein also said our universe has a speed limit: nothing can travel faster than the speed of light (186,000 miles per second).

Einstein's theory of relativity says that space and time are linked together. Credit: NASA/JPL-Caltech

What does this mean for time travel? Well, according to this theory, the faster you travel, the slower you experience time. Scientists have done some experiments to show that this is true.

For example, there was an experiment that used two clocks set to the exact same time. One clock stayed on Earth, while the other flew in an airplane (going in the same direction Earth rotates).

After the airplane flew around the world, scientists compared the two clocks. The clock on the fast-moving airplane was slightly behind the clock on the ground. So, the clock on the airplane was traveling slightly slower in time than 1 second per second.

Credit: NASA/JPL-Caltech

Can we use time travel in everyday life?

We can't use a time machine to travel hundreds of years into the past or future. That kind of time travel only happens in books and movies. But the math of time travel does affect the things we use every day.

For example, we use GPS satellites to help us figure out how to get to new places. (Check out our video about how GPS satellites work .) NASA scientists also use a high-accuracy version of GPS to keep track of where satellites are in space. But did you know that GPS relies on time-travel calculations to help you get around town?

GPS satellites orbit around Earth very quickly at about 8,700 miles (14,000 kilometers) per hour. This slows down GPS satellite clocks by a small fraction of a second (similar to the airplane example above).

Illustration of GPS satellites orbiting around Earth

GPS satellites orbit around Earth at about 8,700 miles (14,000 kilometers) per hour. Credit: GPS.gov

However, the satellites are also orbiting Earth about 12,550 miles (20,200 km) above the surface. This actually speeds up GPS satellite clocks by a slighter larger fraction of a second.

Here's how: Einstein's theory also says that gravity curves space and time, causing the passage of time to slow down. High up where the satellites orbit, Earth's gravity is much weaker. This causes the clocks on GPS satellites to run faster than clocks on the ground.

The combined result is that the clocks on GPS satellites experience time at a rate slightly faster than 1 second per second. Luckily, scientists can use math to correct these differences in time.

Illustration of a hand holding a phone with a maps application active.

If scientists didn't correct the GPS clocks, there would be big problems. GPS satellites wouldn't be able to correctly calculate their position or yours. The errors would add up to a few miles each day, which is a big deal. GPS maps might think your home is nowhere near where it actually is!

In Summary:

Yes, time travel is indeed a real thing. But it's not quite what you've probably seen in the movies. Under certain conditions, it is possible to experience time passing at a different rate than 1 second per second. And there are important reasons why we need to understand this real-world form of time travel.

If you liked this, you may like:

Illustration of a game controller that links to the Space Place Games menu.

Time travel: Is it possible?

Science says time travel is possible, but probably not in the way you're thinking.

time travel graphic illustration of a tunnel with a clock face swirling through the tunnel.

Albert Einstein's theory

  • General relativity and GPS
  • Wormhole travel
  • Alternate theories

Science fiction

Is time travel possible? Short answer: Yes, and you're doing it right now — hurtling into the future at the impressive rate of one second per second. 

You're pretty much always moving through time at the same speed, whether you're watching paint dry or wishing you had more hours to visit with a friend from out of town. 

But this isn't the kind of time travel that's captivated countless science fiction writers, or spurred a genre so extensive that Wikipedia lists over 400 titles in the category "Movies about Time Travel." In franchises like " Doctor Who ," " Star Trek ," and "Back to the Future" characters climb into some wild vehicle to blast into the past or spin into the future. Once the characters have traveled through time, they grapple with what happens if you change the past or present based on information from the future (which is where time travel stories intersect with the idea of parallel universes or alternate timelines). 

Related: The best sci-fi time machines ever

Although many people are fascinated by the idea of changing the past or seeing the future before it's due, no person has ever demonstrated the kind of back-and-forth time travel seen in science fiction or proposed a method of sending a person through significant periods of time that wouldn't destroy them on the way. And, as physicist Stephen Hawking pointed out in his book " Black Holes and Baby Universes" (Bantam, 1994), "The best evidence we have that time travel is not possible, and never will be, is that we have not been invaded by hordes of tourists from the future."

Science does support some amount of time-bending, though. For example, physicist Albert Einstein 's theory of special relativity proposes that time is an illusion that moves relative to an observer. An observer traveling near the speed of light will experience time, with all its aftereffects (boredom, aging, etc.) much more slowly than an observer at rest. That's why astronaut Scott Kelly aged ever so slightly less over the course of a year in orbit than his twin brother who stayed here on Earth. 

Related: Controversially, physicist argues that time is real

There are other scientific theories about time travel, including some weird physics that arise around wormholes , black holes and string theory . For the most part, though, time travel remains the domain of an ever-growing array of science fiction books, movies, television shows, comics, video games and more. 

Scott and Mark Kelly sit side by side wearing a blue NASA jacket and jeans

Einstein developed his theory of special relativity in 1905. Along with his later expansion, the theory of general relativity , it has become one of the foundational tenets of modern physics. Special relativity describes the relationship between space and time for objects moving at constant speeds in a straight line. 

The short version of the theory is deceptively simple. First, all things are measured in relation to something else — that is to say, there is no "absolute" frame of reference. Second, the speed of light is constant. It stays the same no matter what, and no matter where it's measured from. And third, nothing can go faster than the speed of light.

From those simple tenets unfolds actual, real-life time travel. An observer traveling at high velocity will experience time at a slower rate than an observer who isn't speeding through space. 

While we don't accelerate humans to near-light-speed, we do send them swinging around the planet at 17,500 mph (28,160 km/h) aboard the International Space Station . Astronaut Scott Kelly was born after his twin brother, and fellow astronaut, Mark Kelly . Scott Kelly spent 520 days in orbit, while Mark logged 54 days in space. The difference in the speed at which they experienced time over the course of their lifetimes has actually widened the age gap between the two men.

"So, where[as] I used to be just 6 minutes older, now I am 6 minutes and 5 milliseconds older," Mark Kelly said in a panel discussion on July 12, 2020, Space.com previously reported . "Now I've got that over his head."

General relativity and GPS time travel

Graphic showing the path of GPS satellites around Earth at the center of the image.

The difference that low earth orbit makes in an astronaut's life span may be negligible — better suited for jokes among siblings than actual life extension or visiting the distant future — but the dilation in time between people on Earth and GPS satellites flying through space does make a difference. 

Read more: Can we stop time?

The Global Positioning System , or GPS, helps us know exactly where we are by communicating with a network of a few dozen satellites positioned in a high Earth orbit. The satellites circle the planet from 12,500 miles (20,100 kilometers) away, moving at 8,700 mph (14,000 km/h). 

According to special relativity, the faster an object moves relative to another object, the slower that first object experiences time. For GPS satellites with atomic clocks, this effect cuts 7 microseconds, or 7 millionths of a second, off each day, according to the American Physical Society publication Physics Central .  

Read more: Could Star Trek's faster-than-light warp drive actually work?

Then, according to general relativity, clocks closer to the center of a large gravitational mass like Earth tick more slowly than those farther away. So, because the GPS satellites are much farther from the center of Earth compared to clocks on the surface, Physics Central added, that adds another 45 microseconds onto the GPS satellite clocks each day. Combined with the negative 7 microseconds from the special relativity calculation, the net result is an added 38 microseconds. 

This means that in order to maintain the accuracy needed to pinpoint your car or phone — or, since the system is run by the U.S. Department of Defense, a military drone — engineers must account for an extra 38 microseconds in each satellite's day. The atomic clocks onboard don’t tick over to the next day until they have run 38 microseconds longer than comparable clocks on Earth.

Given those numbers, it would take more than seven years for the atomic clock in a GPS satellite to un-sync itself from an Earth clock by more than a blink of an eye. (We did the math: If you estimate a blink to last at least 100,000 microseconds, as the Harvard Database of Useful Biological Numbers does, it would take thousands of days for those 38 microsecond shifts to add up.) 

This kind of time travel may seem as negligible as the Kelly brothers' age gap, but given the hyper-accuracy of modern GPS technology, it actually does matter. If it can communicate with the satellites whizzing overhead, your phone can nail down your location in space and time with incredible accuracy. 

Can wormholes take us back in time?

General relativity might also provide scenarios that could allow travelers to go back in time, according to NASA . But the physical reality of those time-travel methods is no piece of cake. 

Wormholes are theoretical "tunnels" through the fabric of space-time that could connect different moments or locations in reality to others. Also known as Einstein-Rosen bridges or white holes, as opposed to black holes, speculation about wormholes abounds. But despite taking up a lot of space (or space-time) in science fiction, no wormholes of any kind have been identified in real life. 

Related: Best time travel movies

"The whole thing is very hypothetical at this point," Stephen Hsu, a professor of theoretical physics at the University of Oregon, told Space.com sister site Live Science . "No one thinks we're going to find a wormhole anytime soon."

Primordial wormholes are predicted to be just 10^-34 inches (10^-33 centimeters) at the tunnel's "mouth". Previously, they were expected to be too unstable for anything to be able to travel through them. However, a study claims that this is not the case, Live Science reported . 

The theory, which suggests that wormholes could work as viable space-time shortcuts, was described by physicist Pascal Koiran. As part of the study, Koiran used the Eddington-Finkelstein metric, as opposed to the Schwarzschild metric which has been used in the majority of previous analyses.

In the past, the path of a particle could not be traced through a hypothetical wormhole. However, using the Eddington-Finkelstein metric, the physicist was able to achieve just that.

Koiran's paper was described in October 2021, in the preprint database arXiv , before being published in the Journal of Modern Physics D.

Graphic illustration of a wormhole

Alternate time travel theories

While Einstein's theories appear to make time travel difficult, some researchers have proposed other solutions that could allow jumps back and forth in time. These alternate theories share one major flaw: As far as scientists can tell, there's no way a person could survive the kind of gravitational pulling and pushing that each solution requires.

Infinite cylinder theory

Astronomer Frank Tipler proposed a mechanism (sometimes known as a Tipler Cylinder ) where one could take matter that is 10 times the sun's mass, then roll it into a very long, but very dense cylinder. The Anderson Institute , a time travel research organization, described the cylinder as "a black hole that has passed through a spaghetti factory."

After spinning this black hole spaghetti a few billion revolutions per minute, a spaceship nearby — following a very precise spiral around the cylinder — could travel backward in time on a "closed, time-like curve," according to the Anderson Institute. 

The major problem is that in order for the Tipler Cylinder to become reality, the cylinder would need to be infinitely long or be made of some unknown kind of matter. At least for the foreseeable future, endless interstellar pasta is beyond our reach.

Time donuts

Theoretical physicist Amos Ori at the Technion-Israel Institute of Technology in Haifa, Israel, proposed a model for a time machine made out of curved space-time — a donut-shaped vacuum surrounded by a sphere of normal matter.

"The machine is space-time itself," Ori told Live Science . "If we were to create an area with a warp like this in space that would enable time lines to close on themselves, it might enable future generations to return to visit our time."

Amos Ori is a theoretical physicist at the Technion-Israel Institute of Technology in Haifa, Israel. His research interests and publications span the fields of general relativity, black holes, gravitational waves and closed time lines.

There are a few caveats to Ori's time machine. First, visitors to the past wouldn't be able to travel to times earlier than the invention and construction of the time donut. Second, and more importantly, the invention and construction of this machine would depend on our ability to manipulate gravitational fields at will — a feat that may be theoretically possible but is certainly beyond our immediate reach.

Graphic illustration of the TARDIS (Time and Relative Dimensions in Space) traveling through space, surrounded by stars.

Time travel has long occupied a significant place in fiction. Since as early as the "Mahabharata," an ancient Sanskrit epic poem compiled around 400 B.C., humans have dreamed of warping time, Lisa Yaszek, a professor of science fiction studies at the Georgia Institute of Technology in Atlanta, told Live Science .  

Every work of time-travel fiction creates its own version of space-time, glossing over one or more scientific hurdles and paradoxes to achieve its plot requirements. 

Some make a nod to research and physics, like " Interstellar ," a 2014 film directed by Christopher Nolan. In the movie, a character played by Matthew McConaughey spends a few hours on a planet orbiting a supermassive black hole, but because of time dilation, observers on Earth experience those hours as a matter of decades. 

Others take a more whimsical approach, like the "Doctor Who" television series. The series features the Doctor, an extraterrestrial "Time Lord" who travels in a spaceship resembling a blue British police box. "People assume," the Doctor explained in the show, "that time is a strict progression from cause to effect, but actually from a non-linear, non-subjective viewpoint, it's more like a big ball of wibbly-wobbly, timey-wimey stuff." 

Long-standing franchises like the "Star Trek" movies and television series, as well as comic universes like DC and Marvel Comics, revisit the idea of time travel over and over. 

Related: Marvel movies in order: chronological & release order

Here is an incomplete (and deeply subjective) list of some influential or notable works of time travel fiction:

Books about time travel:

A sketch from the Christmas Carol shows a cloaked figure on the left and a person kneeling and clutching their head with their hands.

  • Rip Van Winkle (Cornelius S. Van Winkle, 1819) by Washington Irving
  • A Christmas Carol (Chapman & Hall, 1843) by Charles Dickens
  • The Time Machine (William Heinemann, 1895) by H. G. Wells
  • A Connecticut Yankee in King Arthur's Court (Charles L. Webster and Co., 1889) by Mark Twain
  • The Restaurant at the End of the Universe (Pan Books, 1980) by Douglas Adams
  • A Tale of Time City (Methuen, 1987) by Diana Wynn Jones
  • The Outlander series (Delacorte Press, 1991-present) by Diana Gabaldon
  • Harry Potter and the Prisoner of Azkaban (Bloomsbury/Scholastic, 1999) by J. K. Rowling
  • Thief of Time (Doubleday, 2001) by Terry Pratchett
  • The Time Traveler's Wife (MacAdam/Cage, 2003) by Audrey Niffenegger
  • All You Need is Kill (Shueisha, 2004) by Hiroshi Sakurazaka

Movies about time travel:

  • Planet of the Apes (1968)
  • Superman (1978)
  • Time Bandits (1981)
  • The Terminator (1984)
  • Back to the Future series (1985, 1989, 1990)
  • Star Trek IV: The Voyage Home (1986)
  • Bill & Ted's Excellent Adventure (1989)
  • Groundhog Day (1993)
  • Galaxy Quest (1999)
  • The Butterfly Effect (2004)
  • 13 Going on 30 (2004)
  • The Lake House (2006)
  • Meet the Robinsons (2007)
  • Hot Tub Time Machine (2010)
  • Midnight in Paris (2011)
  • Looper (2012)
  • X-Men: Days of Future Past (2014)
  • Edge of Tomorrow (2014)
  • Interstellar (2014)
  • Doctor Strange (2016)
  • A Wrinkle in Time (2018)
  • The Last Sharknado: It's About Time (2018)
  • Avengers: Endgame (2019)
  • Tenet (2020)
  • Palm Springs (2020)
  • Zach Snyder's Justice League (2021)
  • The Tomorrow War (2021)

Television about time travel:

Image of the Star Trek spaceship USS Enterprise

  • Doctor Who (1963-present)
  • The Twilight Zone (1959-1964) (multiple episodes)
  • Star Trek (multiple series, multiple episodes)
  • Samurai Jack (2001-2004)
  • Lost (2004-2010)
  • Phil of the Future (2004-2006)
  • Steins;Gate (2011)
  • Outlander (2014-2023)
  • Loki (2021-present)

Games about time travel:

  • Chrono Trigger (1995)
  • TimeSplitters (2000-2005)
  • Kingdom Hearts (2002-2019)
  • Prince of Persia: Sands of Time (2003)
  • God of War II (2007)
  • Ratchet and Clank Future: A Crack In Time (2009)
  • Sly Cooper: Thieves in Time (2013)
  • Dishonored 2 (2016)
  • Titanfall 2 (2016)
  • Outer Wilds (2019)

Additional resources

Explore physicist Peter Millington's thoughts about Stephen Hawking's time travel theories at The Conversation . Check out a kid-friendly explanation of real-world time travel from NASA's Space Place . For an overview of time travel in fiction and the collective consciousness, read " Time Travel: A History " (Pantheon, 2016) by James Gleik. 

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Ailsa Harvey

Ailsa is a staff writer for How It Works magazine, where she writes science, technology, space, history and environment features. Based in the U.K., she graduated from the University of Stirling with a BA (Hons) journalism degree. Previously, Ailsa has written for Cardiff Times magazine, Psychology Now and numerous science bookazines. 

Satellites watch as 4th global coral bleaching event unfolds (image)

Happy Earth Day 2024! NASA picks 6 new airborne missions to study our changing planet

Boeing's Starliner spacecraft will not fly private missions yet, officials say

Most Popular

  • 2 SpaceX launching Falcon 9 rocket on record-tying 20th mission today
  • 3 Watch 2 gorgeous supernova remnants evolve over 20 years (timelapse video)
  • 4 Boeing Starliner 1st astronaut flight: Live updates
  • 5 US Space Force picks Rocket Lab for 2025 Victus Haze space domain awareness mission

what is time travel used for

We have completed maintenance on Astronomy.com and action may be required on your account. Learn More

Astronomy Magazine logo

  • Login/Register
  • Solar System
  • Exotic Objects
  • Upcoming Events
  • Deep-Sky Objects
  • Observing Basics
  • Telescopes and Equipment
  • Astrophotography
  • Space Exploration
  • Human Spaceflight
  • Robotic Spaceflight
  • The Magazine

Is time travel possible? An astrophysicist explains

Time travel is one of the most intriguing topics in science.

Will it ever be possible for time travel to occur? – Alana C., age 12, Queens, New York

Have you ever dreamed of traveling through time, like characters do in science fiction movies? For centuries, the concept of time travel has captivated people’s imaginations. Time travel is the concept of moving between different points in time, just like you move between different places. In movies, you might have seen characters using special machines, magical devices or even hopping into a futuristic car to travel backward or forward in time.

But is this just a fun idea for movies, or could it really happen?

The question of whether time is reversible remains one of the biggest unresolved questions in science. If the universe follows the  laws of thermodynamics , it may not be possible. The second law of thermodynamics states that things in the universe can either remain the same or become more disordered over time.

It’s a bit like saying you can’t unscramble eggs once they’ve been cooked. According to this law, the universe can never go back exactly to how it was before. Time can only go forward, like a one-way street.

Time is relative

However, physicist Albert Einstein’s  theory of special relativity  suggests that time passes at different rates for different people. Someone speeding along on a spaceship moving close to the  speed of light  – 671 million miles per hour! – will experience time slower than a person on Earth.

Related: The speed of light, explained

People have yet to build spaceships that can move at speeds anywhere near as fast as light, but astronauts who visit the International Space Station orbit around the Earth at speeds close to 17,500 mph. Astronaut Scott Kelly has spent 520 days at the International Space Station, and as a result has aged a little more slowly than his twin brother – and fellow astronaut – Mark Kelly. Scott used to be 6 minutes younger than his twin brother. Now, because Scott was traveling so much faster than Mark and for so many days, he is  6 minutes and 5 milliseconds younger .

Some scientists are exploring other ideas that could theoretically allow time travel. One concept involves  wormholes , or hypothetical tunnels in space that could create shortcuts for journeys across the universe. If someone could build a wormhole and then figure out a way to move one end at close to the speed of light – like the hypothetical spaceship mentioned above – the moving end would age more slowly than the stationary end. Someone who entered the moving end and exited the wormhole through the stationary end would come out in their past.

However, wormholes remain theoretical : Scientists have yet to spot one. It also looks like it would be  incredibly challenging  to send humans through a wormhole space tunnel.

Time travel paradoxes and failed dinner parties

There are also paradoxes associated with time travel. The famous “ grandfather paradox ” is a hypothetical problem that could arise if someone traveled back in time and accidentally prevented their grandparents from meeting. This would create a paradox where you were never born, which raises the question: How could you have traveled back in time in the first place? It’s a mind-boggling puzzle that adds to the mystery of time travel.

Famously, physicist Stephen Hawking tested the possibility of time travel by  throwing a dinner party  where invitations noting the date, time and coordinates were not sent out until after it had happened. His hope was that his invitation would be read by someone living in the future, who had capabilities to travel back in time. But no one showed up.

As he  pointed out : “The best evidence we have that time travel is not possible, and never will be, is that we have not been invaded by hordes of tourists from the future.”

Telescopes are time machines

Interestingly, astrophysicists armed with powerful telescopes possess a unique form of time travel. As they peer into the vast expanse of the cosmos, they gaze into the past universe. Light from all galaxies and stars takes time to travel, and these beams of light carry information from the distant past. When astrophysicists observe a star or a galaxy through a telescope, they are not seeing it as it is in the present, but as it existed when the light began its journey to Earth millions to billions of years ago.

NASA’s newest space telescope, the  James Webb Space Telescope , is peering at galaxies that were formed at the very beginning of the Big Bang, about 13.7 billion years ago.

While we aren’t likely to have time machines like the ones in movies anytime soon, scientists are actively researching and exploring new ideas. But for now, we’ll have to enjoy the idea of time travel in our favorite books, movies and dreams.

This article first appeared on the Conversation. You can read the original here .

Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to  [email protected] . Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.

A composite image showing the Full Moons in 2020 and 2021 by month.

2024 Full Moon calendar: Dates, times, types, and names

The beautiful spiral galaxy Messier 83, which our Milky Way may resemble.

The Milky Way, to ancient Egyptians, was probably mixed Nuts

An artistic conception of the Milky Way, estimated to contain 100,000,000,000 (100 billion) stars.

The reasons why numbers go on forever

The May 2024 issue of Astronomy Magazine.

Astronomy Magazine Annual Index

what is time travel used for

How to see the next 20 years of eclipses, including the eclipse of a lifetime

Black holes, like the one in this illustration, can emit energetic neutrinos. Credit: NASA/Chandra X-ray Observatory.

IceCube researchers detect a rare type of particle sent from powerful astronomical objects

Pluto, as imaged by New Horizons

A collision with something the size of Arizona could have formed half of Pluto’s ‘heart’

When stars “die,” they leave one of two objects behind. Massive stars explode as supernovae, creating remnants of gas and dust like the Crab Nebula (M1). Credit: ASA, ESA, J. Hester and A. Loll (Arizona State University)

How many stars die in the Milky Way each year?

Evidence suggests that a devastating barrage of meteorites rained down on the Dead Sea city of Tall el-Hammam in what is now Jordan. And, according to some researchers who think Tall el-Hammam was the biblical city of Sodom, that scenario could explain its destruction. John Martin/Wikimedia Commons

7 unconfirmed, unlucky tales of people killed by meteorites

April 26, 2023

Is Time Travel Possible?

The laws of physics allow time travel. So why haven’t people become chronological hoppers?

By Sarah Scoles

3D illustration tunnel background

yuanyuan yan/Getty Images

In the movies, time travelers typically step inside a machine and—poof—disappear. They then reappear instantaneously among cowboys, knights or dinosaurs. What these films show is basically time teleportation .

Scientists don’t think this conception is likely in the real world, but they also don’t relegate time travel to the crackpot realm. In fact, the laws of physics might allow chronological hopping, but the devil is in the details.

Time traveling to the near future is easy: you’re doing it right now at a rate of one second per second, and physicists say that rate can change. According to Einstein’s special theory of relativity, time’s flow depends on how fast you’re moving. The quicker you travel, the slower seconds pass. And according to Einstein’s general theory of relativity , gravity also affects clocks: the more forceful the gravity nearby, the slower time goes.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

“Near massive bodies—near the surface of neutron stars or even at the surface of the Earth, although it’s a tiny effect—time runs slower than it does far away,” says Dave Goldberg, a cosmologist at Drexel University.

If a person were to hang out near the edge of a black hole , where gravity is prodigious, Goldberg says, only a few hours might pass for them while 1,000 years went by for someone on Earth. If the person who was near the black hole returned to this planet, they would have effectively traveled to the future. “That is a real effect,” he says. “That is completely uncontroversial.”

Going backward in time gets thorny, though (thornier than getting ripped to shreds inside a black hole). Scientists have come up with a few ways it might be possible, and they have been aware of time travel paradoxes in general relativity for decades. Fabio Costa, a physicist at the Nordic Institute for Theoretical Physics, notes that an early solution with time travel began with a scenario written in the 1920s. That idea involved massive long cylinder that spun fast in the manner of straw rolled between your palms and that twisted spacetime along with it. The understanding that this object could act as a time machine allowing one to travel to the past only happened in the 1970s, a few decades after scientists had discovered a phenomenon called “closed timelike curves.”

“A closed timelike curve describes the trajectory of a hypothetical observer that, while always traveling forward in time from their own perspective, at some point finds themselves at the same place and time where they started, creating a loop,” Costa says. “This is possible in a region of spacetime that, warped by gravity, loops into itself.”

“Einstein read [about closed timelike curves] and was very disturbed by this idea,” he adds. The phenomenon nevertheless spurred later research.

Science began to take time travel seriously in the 1980s. In 1990, for instance, Russian physicist Igor Novikov and American physicist Kip Thorne collaborated on a research paper about closed time-like curves. “They started to study not only how one could try to build a time machine but also how it would work,” Costa says.

Just as importantly, though, they investigated the problems with time travel. What if, for instance, you tossed a billiard ball into a time machine, and it traveled to the past and then collided with its past self in a way that meant its present self could never enter the time machine? “That looks like a paradox,” Costa says.

Since the 1990s, he says, there’s been on-and-off interest in the topic yet no big breakthrough. The field isn’t very active today, in part because every proposed model of a time machine has problems. “It has some attractive features, possibly some potential, but then when one starts to sort of unravel the details, there ends up being some kind of a roadblock,” says Gaurav Khanna of the University of Rhode Island.

For instance, most time travel models require negative mass —and hence negative energy because, as Albert Einstein revealed when he discovered E = mc 2 , mass and energy are one and the same. In theory, at least, just as an electric charge can be positive or negative, so can mass—though no one’s ever found an example of negative mass. Why does time travel depend on such exotic matter? In many cases, it is needed to hold open a wormhole—a tunnel in spacetime predicted by general relativity that connects one point in the cosmos to another.

Without negative mass, gravity would cause this tunnel to collapse. “You can think of it as counteracting the positive mass or energy that wants to traverse the wormhole,” Goldberg says.

Khanna and Goldberg concur that it’s unlikely matter with negative mass even exists, although Khanna notes that some quantum phenomena show promise, for instance, for negative energy on very small scales. But that would be “nowhere close to the scale that would be needed” for a realistic time machine, he says.

These challenges explain why Khanna initially discouraged Caroline Mallary, then his graduate student at the University of Massachusetts Dartmouth, from doing a time travel project. Mallary and Khanna went forward anyway and came up with a theoretical time machine that didn’t require negative mass. In its simplistic form, Mallary’s idea involves two parallel cars, each made of regular matter. If you leave one parked and zoom the other with extreme acceleration, a closed timelike curve will form between them.

Easy, right? But while Mallary’s model gets rid of the need for negative matter, it adds another hurdle: it requires infinite density inside the cars for them to affect spacetime in a way that would be useful for time travel. Infinite density can be found inside a black hole, where gravity is so intense that it squishes matter into a mind-bogglingly small space called a singularity. In the model, each of the cars needs to contain such a singularity. “One of the reasons that there's not a lot of active research on this sort of thing is because of these constraints,” Mallary says.

Other researchers have created models of time travel that involve a wormhole, or a tunnel in spacetime from one point in the cosmos to another. “It's sort of a shortcut through the universe,” Goldberg says. Imagine accelerating one end of the wormhole to near the speed of light and then sending it back to where it came from. “Those two sides are no longer synced,” he says. “One is in the past; one is in the future.” Walk between them, and you’re time traveling.

You could accomplish something similar by moving one end of the wormhole near a big gravitational field—such as a black hole—while keeping the other end near a smaller gravitational force. In that way, time would slow down on the big gravity side, essentially allowing a particle or some other chunk of mass to reside in the past relative to the other side of the wormhole.

Making a wormhole requires pesky negative mass and energy, however. A wormhole created from normal mass would collapse because of gravity. “Most designs tend to have some similar sorts of issues,” Goldberg says. They’re theoretically possible, but there’s currently no feasible way to make them, kind of like a good-tasting pizza with no calories.

And maybe the problem is not just that we don’t know how to make time travel machines but also that it’s not possible to do so except on microscopic scales—a belief held by the late physicist Stephen Hawking. He proposed the chronology protection conjecture: The universe doesn’t allow time travel because it doesn’t allow alterations to the past. “It seems there is a chronology protection agency, which prevents the appearance of closed timelike curves and so makes the universe safe for historians,” Hawking wrote in a 1992 paper in Physical Review D .

Part of his reasoning involved the paradoxes time travel would create such as the aforementioned situation with a billiard ball and its more famous counterpart, the grandfather paradox : If you go back in time and kill your grandfather before he has children, you can’t be born, and therefore you can’t time travel, and therefore you couldn’t have killed your grandfather. And yet there you are.

Those complications are what interests Massachusetts Institute of Technology philosopher Agustin Rayo, however, because the paradoxes don’t just call causality and chronology into question. They also make free will seem suspect. If physics says you can go back in time, then why can’t you kill your grandfather? “What stops you?” he says. Are you not free?

Rayo suspects that time travel is consistent with free will, though. “What’s past is past,” he says. “So if, in fact, my grandfather survived long enough to have children, traveling back in time isn’t going to change that. Why will I fail if I try? I don’t know because I don’t have enough information about the past. What I do know is that I’ll fail somehow.”

If you went to kill your grandfather, in other words, you’d perhaps slip on a banana en route or miss the bus. “It's not like you would find some special force compelling you not to do it,” Costa says. “You would fail to do it for perfectly mundane reasons.”

In 2020 Costa worked with Germain Tobar, then his undergraduate student at the University of Queensland in Australia, on the math that would underlie a similar idea: that time travel is possible without paradoxes and with freedom of choice.

Goldberg agrees with them in a way. “I definitely fall into the category of [thinking that] if there is time travel, it will be constructed in such a way that it produces one self-consistent view of history,” he says. “Because that seems to be the way that all the rest of our physical laws are constructed.”

No one knows what the future of time travel to the past will hold. And so far, no time travelers have come to tell us about it.

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Time Travel

There is an extensive literature on time travel in both philosophy and physics. Part of the great interest of the topic stems from the fact that reasons have been given both for thinking that time travel is physically possible—and for thinking that it is logically impossible! This entry deals primarily with philosophical issues; issues related to the physics of time travel are covered in the separate entries on time travel and modern physics and time machines . We begin with the definitional question: what is time travel? We then turn to the major objection to the possibility of backwards time travel: the Grandfather paradox. Next, issues concerning causation are discussed—and then, issues in the metaphysics of time and change. We end with a discussion of the question why, if backwards time travel will ever occur, we have not been visited by time travellers from the future.

1.1 Time Discrepancy

1.2 changing the past, 2.1 can and cannot, 2.2 improbable coincidences, 2.3 inexplicable occurrences, 3.1 backwards causation, 3.2 causal loops, 4.1 time travel and time, 4.2 time travel and change, 5. where are the time travellers, other internet resources, related entries, 1. what is time travel.

There is a number of rather different scenarios which would seem, intuitively, to count as ‘time travel’—and a number of scenarios which, while sharing certain features with some of the time travel cases, seem nevertheless not to count as genuine time travel: [ 1 ]

Time travel Doctor . Doctor Who steps into a machine in 2024. Observers outside the machine see it disappear. Inside the machine, time seems to Doctor Who to pass for ten minutes. Observers in 1984 (or 3072) see the machine appear out of nowhere. Doctor Who steps out. [ 2 ] Leap . The time traveller takes hold of a special device (or steps into a machine) and suddenly disappears; she appears at an earlier (or later) time. Unlike in Doctor , the time traveller experiences no lapse of time between her departure and arrival: from her point of view, she instantaneously appears at the destination time. [ 3 ] Putnam . Oscar Smith steps into a machine in 2024. From his point of view, things proceed much as in Doctor : time seems to Oscar Smith to pass for a while; then he steps out in 1984. For observers outside the machine, things proceed differently. Observers of Oscar’s arrival in the past see a time machine suddenly appear out of nowhere and immediately divide into two copies of itself: Oscar Smith steps out of one; and (through the window) they see inside the other something that looks just like what they would see if a film of Oscar Smith were played backwards (his hair gets shorter; food comes out of his mouth and goes back into his lunch box in a pristine, uneaten state; etc.). Observers of Oscar’s departure from the future do not simply see his time machine disappear after he gets into it: they see it collide with the apparently backwards-running machine just described, in such a way that both are simultaneously annihilated. [ 4 ] Gödel . The time traveller steps into an ordinary rocket ship (not a special time machine) and flies off on a certain course. At no point does she disappear (as in Leap ) or ‘turn back in time’ (as in Putnam )—yet thanks to the overall structure of spacetime (as conceived in the General Theory of Relativity), the traveller arrives at a point in the past (or future) of her departure. (Compare the way in which someone can travel continuously westwards, and arrive to the east of her departure point, thanks to the overall curved structure of the surface of the earth.) [ 5 ] Einstein . The time traveller steps into an ordinary rocket ship and flies off at high speed on a round trip. When he returns to Earth, thanks to certain effects predicted by the Special Theory of Relativity, only a very small amount of time has elapsed for him—he has aged only a few months—while a great deal of time has passed on Earth: it is now hundreds of years in the future of his time of departure. [ 6 ] Not time travel Sleep . One is very tired, and falls into a deep sleep. When one awakes twelve hours later, it seems from one’s own point of view that hardly any time has passed. Coma . One is in a coma for a number of years and then awakes, at which point it seems from one’s own point of view that hardly any time has passed. Cryogenics . One is cryogenically frozen for hundreds of years. Upon being woken, it seems from one’s own point of view that hardly any time has passed. Virtual . One enters a highly realistic, interactive virtual reality simulator in which some past era has been recreated down to the finest detail. Crystal . One looks into a crystal ball and sees what happened at some past time, or will happen at some future time. (Imagine that the crystal ball really works—like a closed-circuit security monitor, except that the vision genuinely comes from some past or future time. Even so, the person looking at the crystal ball is not thereby a time traveller.) Waiting . One enters one’s closet and stays there for seven hours. When one emerges, one has ‘arrived’ seven hours in the future of one’s ‘departure’. Dateline . One departs at 8pm on Monday, flies for fourteen hours, and arrives at 10pm on Monday.

A satisfactory definition of time travel would, at least, need to classify the cases in the right way. There might be some surprises—perhaps, on the best definition of ‘time travel’, Cryogenics turns out to be time travel after all—but it should certainly be the case, for example, that Gödel counts as time travel and that Sleep and Waiting do not. [ 7 ]

In fact there is no entirely satisfactory definition of ‘time travel’ in the literature. The most popular definition is the one given by Lewis (1976, 145–6):

What is time travel? Inevitably, it involves a discrepancy between time and time. Any traveller departs and then arrives at his destination; the time elapsed from departure to arrival…is the duration of the journey. But if he is a time traveller, the separation in time between departure and arrival does not equal the duration of his journey.…How can it be that the same two events, his departure and his arrival, are separated by two unequal amounts of time?…I reply by distinguishing time itself, external time as I shall also call it, from the personal time of a particular time traveller: roughly, that which is measured by his wristwatch. His journey takes an hour of his personal time, let us say…But the arrival is more than an hour after the departure in external time, if he travels toward the future; or the arrival is before the departure in external time…if he travels toward the past.

This correctly excludes Waiting —where the length of the ‘journey’ precisely matches the separation between ‘arrival’ and ‘departure’—and Crystal , where there is no journey at all—and it includes Doctor . It has trouble with Gödel , however—because when the overall structure of spacetime is as twisted as it is in the sort of case Gödel imagined, the notion of external time (“time itself”) loses its grip.

Another definition of time travel that one sometimes encounters in the literature (Arntzenius, 2006, 602) (Smeenk and Wüthrich, 2011, 5, 26) equates time travel with the existence of CTC’s: closed timelike curves. A curve in this context is a line in spacetime; it is timelike if it could represent the career of a material object; and it is closed if it returns to its starting point (i.e. in spacetime—not merely in space). This now includes Gödel —but it excludes Einstein .

The lack of an adequate definition of ‘time travel’ does not matter for our purposes here. [ 8 ] It suffices that we have clear cases of (what would count as) time travel—and that these cases give rise to all the problems that we shall wish to discuss.

Some authors (in philosophy, physics and science fiction) consider ‘time travel’ scenarios in which there are two temporal dimensions (e.g. Meiland (1974)), and others consider scenarios in which there are multiple ‘parallel’ universes—each one with its own four-dimensional spacetime (e.g. Deutsch and Lockwood (1994)). There is a question whether travelling to another version of 2001 (i.e. not the very same version one experienced in the past)—a version at a different point on the second time dimension, or in a different parallel universe—is really time travel, or whether it is more akin to Virtual . In any case, this kind of scenario does not give rise to many of the problems thrown up by the idea of travelling to the very same past one experienced in one’s younger days. It is these problems that form the primary focus of the present entry, and so we shall not have much to say about other kinds of ‘time travel’ scenario in what follows.

One objection to the possibility of time travel flows directly from attempts to define it in anything like Lewis’s way. The worry is that because time travel involves “a discrepancy between time and time”, time travel scenarios are simply incoherent. The time traveller traverses thirty years in one year; she is 51 years old 21 years after her birth; she dies at the age of 100, 200 years before her birth; and so on. The objection is that these are straightforward contradictions: the basic description of what time travel involves is inconsistent; therefore time travel is logically impossible. [ 9 ]

There must be something wrong with this objection, because it would show Einstein to be logically impossible—whereas this sort of future-directed time travel has actually been observed (albeit on a much smaller scale—but that does not affect the present point) (Hafele and Keating, 1972b,a). The most common response to the objection is that there is no contradiction because the interval of time traversed by the time traveller and the duration of her journey are measured with respect to different frames of reference: there is thus no reason why they should coincide. A similar point applies to the discrepancy between the time elapsed since the time traveller’s birth and her age upon arrival. There is no more of a contradiction here than in the fact that Melbourne is both 800 kilometres away from Sydney—along the main highway—and 1200 kilometres away—along the coast road. [ 10 ]

Before leaving the question ‘What is time travel?’ we should note the crucial distinction between changing the past and participating in (aka affecting or influencing) the past. [ 11 ] In the popular imagination, backwards time travel would allow one to change the past: to right the wrongs of history, to prevent one’s younger self doing things one later regretted, and so on. In a model with a single past, however, this idea is incoherent: the very description of the case involves a contradiction (e.g. the time traveller burns all her diaries at midnight on her fortieth birthday in 1976, and does not burn all her diaries at midnight on her fortieth birthday in 1976). It is not as if there are two versions of the past: the original one, without the time traveller present, and then a second version, with the time traveller playing a role. There is just one past—and two perspectives on it: the perspective of the younger self, and the perspective of the older time travelling self. If these perspectives are inconsistent (e.g. an event occurs in one but not the other) then the time travel scenario is incoherent.

This means that time travellers can do less than we might have hoped: they cannot right the wrongs of history; they cannot even stir a speck of dust on a certain day in the past if, on that day, the speck was in fact unmoved. But this does not mean that time travellers must be entirely powerless in the past: while they cannot do anything that did not actually happen, they can (in principle) do anything that did happen. Time travellers cannot change the past: they cannot make it different from the way it was—but they can participate in it: they can be amongst the people who did make the past the way it was. [ 12 ]

What about models involving two temporal dimensions, or parallel universes—do they allow for coherent scenarios in which the past is changed? [ 13 ] There is certainly no contradiction in saying that the time traveller burns all her diaries at midnight on her fortieth birthday in 1976 in universe 1 (or at hypertime A ), and does not burn all her diaries at midnight on her fortieth birthday in 1976 in universe 2 (or at hypertime B ). The question is whether this kind of story involves changing the past in the sense originally envisaged: righting the wrongs of history, preventing subsequently regretted actions, and so on. Goddu (2003) and van Inwagen (2010) argue that it does (in the context of particular hypertime models), while Smith (1997, 365–6; 2015) argues that it does not: that it involves avoiding the past—leaving it untouched while travelling to a different version of the past in which things proceed differently.

2. The Grandfather Paradox

The most important objection to the logical possibility of backwards time travel is the so-called Grandfather paradox. This paradox has actually convinced many people that backwards time travel is impossible:

The dead giveaway that true time-travel is flatly impossible arises from the well-known “paradoxes” it entails. The classic example is “What if you go back into the past and kill your grandfather when he was still a little boy?”…So complex and hopeless are the paradoxes…that the easiest way out of the irrational chaos that results is to suppose that true time-travel is, and forever will be, impossible. (Asimov 1995 [2003, 276–7]) travel into one’s past…would seem to give rise to all sorts of logical problems, if you were able to change history. For example, what would happen if you killed your parents before you were born. It might be that one could avoid such paradoxes by some modification of the concept of free will. But this will not be necessary if what I call the chronology protection conjecture is correct: The laws of physics prevent closed timelike curves from appearing . (Hawking, 1992, 604) [ 14 ]

The paradox comes in different forms. Here’s one version:

If time travel was logically possible then the time traveller could return to the past and in a suicidal rage destroy his time machine before it was completed and murder his younger self. But if this was so a necessary condition for the time trip to have occurred at all is removed, and we should then conclude that the time trip did not occur. Hence if the time trip did occur, then it did not occur. Hence it did not occur, and it is necessary that it did not occur. To reply, as it is standardly done, that our time traveller cannot change the past in this way, is a petitio principii . Why is it that the time traveller is constrained in this way? What mysterious force stills his sudden suicidal rage? (Smith, 1985, 58)

The idea is that backwards time travel is impossible because if it occurred, time travellers would attempt to do things such as kill their younger selves (or their grandfathers etc.). We know that doing these things—indeed, changing the past in any way—is impossible. But were there time travel, there would then be nothing left to stop these things happening. If we let things get to the stage where the time traveller is facing Grandfather with a loaded weapon, then there is nothing left to prevent the impossible from occurring. So we must draw the line earlier: it must be impossible for someone to get into this situation at all; that is, backwards time travel must be impossible.

In order to defend the possibility of time travel in the face of this argument we need to show that time travel is not a sure route to doing the impossible. So, given that a time traveller has gone to the past and is facing Grandfather, what could stop her killing Grandfather? Some science fiction authors resort to the idea of chaperones or time guardians who prevent time travellers from changing the past—or to mysterious forces of logic. But it is hard to take these ideas seriously—and more importantly, it is hard to make them work in detail when we remember that changing the past is impossible. (The chaperone is acting to ensure that the past remains as it was—but the only reason it ever was that way is because of his very actions.) [ 15 ] Fortunately there is a better response—also to be found in the science fiction literature, and brought to the attention of philosophers by Lewis (1976). What would stop the time traveller doing the impossible? She would fail “for some commonplace reason”, as Lewis (1976, 150) puts it. Her gun might jam, a noise might distract her, she might slip on a banana peel, etc. Nothing more than such ordinary occurrences is required to stop the time traveller killing Grandfather. Hence backwards time travel does not entail the occurrence of impossible events—and so the above objection is defused.

A problem remains. Suppose Tim, a time-traveller, is facing his grandfather with a loaded gun. Can Tim kill Grandfather? On the one hand, yes he can. He is an excellent shot; there is no chaperone to stop him; the laws of logic will not magically stay his hand; he hates Grandfather and will not hesitate to pull the trigger; etc. On the other hand, no he can’t. To kill Grandfather would be to change the past, and no-one can do that (not to mention the fact that if Grandfather died, then Tim would not have been born). So we have a contradiction: Tim can kill Grandfather and Tim cannot kill Grandfather. Time travel thus leads to a contradiction: so it is impossible.

Note the difference between this version of the Grandfather paradox and the version considered above. In the earlier version, the contradiction happens if Tim kills Grandfather. The solution was to say that Tim can go into the past without killing Grandfather—hence time travel does not entail a contradiction. In the new version, the contradiction happens as soon as Tim gets to the past. Of course Tim does not kill Grandfather—but we still have a contradiction anyway: for he both can do it, and cannot do it. As Lewis puts it:

Could a time traveler change the past? It seems not: the events of a past moment could no more change than numbers could. Yet it seems that he would be as able as anyone to do things that would change the past if he did them. If a time traveler visiting the past both could and couldn’t do something that would change it, then there cannot possibly be such a time traveler. (Lewis, 1976, 149)

Lewis’s own solution to this problem has been widely accepted. [ 16 ] It turns on the idea that to say that something can happen is to say that its occurrence is compossible with certain facts, where context determines (more or less) which facts are the relevant ones. Tim’s killing Grandfather in 1921 is compossible with the facts about his weapon, training, state of mind, and so on. It is not compossible with further facts, such as the fact that Grandfather did not die in 1921. Thus ‘Tim can kill Grandfather’ is true in one sense (relative to one set of facts) and false in another sense (relative to another set of facts)—but there is no single sense in which it is both true and false. So there is no contradiction here—merely an equivocation.

Another response is that of Vihvelin (1996), who argues that there is no contradiction here because ‘Tim can kill Grandfather’ is simply false (i.e. contra Lewis, there is no legitimate sense in which it is true). According to Vihvelin, for ‘Tim can kill Grandfather’ to be true, there must be at least some occasions on which ‘If Tim had tried to kill Grandfather, he would or at least might have succeeded’ is true—but, Vihvelin argues, at any world remotely like ours, the latter counterfactual is always false. [ 17 ]

Return to the original version of the Grandfather paradox and Lewis’s ‘commonplace reasons’ response to it. This response engenders a new objection—due to Horwich (1987)—not to the possibility but to the probability of backwards time travel.

Think about correlated events in general. Whenever we see two things frequently occurring together, this is because one of them causes the other, or some third thing causes both. Horwich calls this the Principle of V-Correlation:

if events of type A and B are associated with one another, then either there is always a chain of events between them…or else we find an earlier event of type C that links up with A and B by two such chains of events. What we do not see is…an inverse fork—in which A and B are connected only with a characteristic subsequent event, but no preceding one. (Horwich, 1987, 97–8)

For example, suppose that two students turn up to class wearing the same outfits. That could just be a coincidence (i.e. there is no common cause, and no direct causal link between the two events). If it happens every week for the whole semester, it is possible that it is a coincidence, but this is extremely unlikely . Normally, we see this sort of extensive correlation only if either there is a common cause (e.g. both students have product endorsement deals with the same clothing company, or both slavishly copy the same influencer) or a direct causal link (e.g. one student is copying the other).

Now consider the time traveller setting off to kill her younger self. As discussed, no contradiction need ensue—this is prevented not by chaperones or mysterious forces, but by a run of ordinary occurrences in which the trigger falls off the time traveller’s gun, a gust of wind pushes her bullet off course, she slips on a banana peel, and so on. But now consider this run of ordinary occurrences. Whenever the time traveller contemplates auto-infanticide, someone nearby will drop a banana peel ready for her to slip on, or a bird will begin to fly so that it will be in the path of the time traveller’s bullet by the time she fires, and so on. In general, there will be a correlation between auto-infanticide attempts and foiling occurrences such as the presence of banana peels—and this correlation will be of the type that does not involve a direct causal connection between the correlated events or a common cause of both. But extensive correlations of this sort are, as we saw, extremely rare—so backwards time travel will happen about as often as you will see two people wear the same outfits to class every day of semester, without there being any causal connection between what one wears and what the other wears.

We can set out Horwich’s argument this way:

  • If time travel were ever to occur, we should see extensive uncaused correlations.
  • It is extremely unlikely that we should ever see extensive uncaused correlations.
  • Therefore time travel is extremely unlikely to occur.

The conclusion is not that time travel is impossible, but that we should treat it the way we treat the possibility of, say, tossing a fair coin and getting heads one thousand times in a row. As Price (1996, 278 n.7) puts it—in the context of endorsing Horwich’s conclusion: “the hypothesis of time travel can be made to imply propositions of arbitrarily low probability. This is not a classical reductio, but it is as close as science ever gets.”

Smith (1997) attacks both premisses of Horwich’s argument. Against the first premise, he argues that backwards time travel, in itself, does not entail extensive uncaused correlations. Rather, when we look more closely, we see that time travel scenarios involving extensive uncaused correlations always build in prior coincidences which are themselves highly unlikely. Against the second premise, he argues that, from the fact that we have never seen extensive uncaused correlations, it does not follow that we never shall. This is not inductive scepticism: let us assume (contra the inductive sceptic) that in the absence of any specific reason for thinking things should be different in the future, we are entitled to assume they will continue being the same; still we cannot dismiss a specific reason for thinking the future will be a certain way simply on the basis that things have never been that way in the past. You might reassure an anxious friend that the sun will certainly rise tomorrow because it always has in the past—but you cannot similarly refute an astronomer who claims to have discovered a specific reason for thinking that the earth will stop rotating overnight.

Sider (2002, 119–20) endorses Smith’s second objection. Dowe (2003) criticises Smith’s first objection, but agrees with the second, concluding overall that time travel has not been shown to be improbable. Ismael (2003) reaches a similar conclusion. Goddu (2007) criticises Smith’s first objection to Horwich. Further contributions to the debate include Arntzenius (2006), Smeenk and Wüthrich (2011, §2.2) and Elliott (2018). For other arguments to the same conclusion as Horwich’s—that time travel is improbable—see Ney (2000) and Effingham (2020).

Return again to the original version of the Grandfather paradox and Lewis’s ‘commonplace reasons’ response to it. This response engenders a further objection. The autoinfanticidal time traveller is attempting to do something impossible (render herself permanently dead from an age younger than her age at the time of the attempts). Suppose we accept that she will not succeed and that what will stop her is a succession of commonplace occurrences. The previous objection was that such a succession is improbable . The new objection is that the exclusion of the time traveler from successfully committing auto-infanticide is mysteriously inexplicable . The worry is as follows. Each particular event that foils the time traveller is explicable in a perfectly ordinary way; but the inevitable combination of these events amounts to a ring-fencing of the forbidden zone of autoinfanticide—and this ring-fencing is mystifying. It’s like a grand conspiracy to stop the time traveler from doing what she wants to do—and yet there are no conspirators: no time lords, no magical forces of logic. This is profoundly perplexing. Riggs (1997, 52) writes: “Lewis’s account may do for a once only attempt, but is untenable as a general explanation of Tim’s continual lack of success if he keeps on trying.” Ismael (2003, 308) writes: “Considered individually, there will be nothing anomalous in the explanations…It is almost irresistible to suppose, however, that there is something anomalous in the cases considered collectively, i.e., in our unfailing lack of success.” See also Gorovitz (1964, 366–7), Horwich (1987, 119–21) and Carroll (2010, 86).

There have been two different kinds of defense of time travel against the objection that it involves mysteriously inexplicable occurrences. Baron and Colyvan (2016, 70) agree with the objectors that a purely causal explanation of failure—e.g. Tim fails to kill Grandfather because first he slips on a banana peel, then his gun jams, and so on—is insufficient. However they argue that, in addition, Lewis offers a non-causal—a logical —explanation of failure: “What explains Tim’s failure to kill his grandfather, then, is something about logic; specifically: Tim fails to kill his grandfather because the law of non-contradiction holds.” Smith (2017) argues that the appearance of inexplicability is illusory. There are no scenarios satisfying the description ‘a time traveller commits autoinfanticide’ (or changes the past in any other way) because the description is self-contradictory (e.g. it involves the time traveller permanently dying at 20 and also being alive at 40). So whatever happens it will not be ‘that’. There is literally no way for the time traveller not to fail. Hence there is no need for—or even possibility of—a substantive explanation of why failure invariably occurs, and such failure is not perplexing.

3. Causation

Backwards time travel scenarios give rise to interesting issues concerning causation. In this section we examine two such issues.

Earlier we distinguished changing the past and affecting the past, and argued that while the former is impossible, backwards time travel need involve only the latter. Affecting the past would be an example of backwards causation (i.e. causation where the effect precedes its cause)—and it has been argued that this too is impossible, or at least problematic. [ 18 ] The classic argument against backwards causation is the bilking argument . [ 19 ] Faced with the claim that some event A causes an earlier event B , the proponent of the bilking objection recommends an attempt to decorrelate A and B —that is, to bring about A in cases in which B has not occurred, and to prevent A in cases in which B has occurred. If the attempt is successful, then B often occurs despite the subsequent nonoccurrence of A , and A often occurs without B occurring, and so A cannot be the cause of B . If, on the other hand, the attempt is unsuccessful—if, that is, A cannot be prevented when B has occurred, nor brought about when B has not occurred—then, it is argued, it must be B that is the cause of A , rather than vice versa.

The bilking procedure requires repeated manipulation of event A . Thus, it cannot get under way in cases in which A is either unrepeatable or unmanipulable. Furthermore, the procedure requires us to know whether or not B has occurred, prior to manipulating A —and thus, it cannot get under way in cases in which it cannot be known whether or not B has occurred until after the occurrence or nonoccurrence of A (Dummett, 1964). These three loopholes allow room for many claims of backwards causation that cannot be touched by the bilking argument, because the bilking procedure cannot be performed at all. But what about those cases in which it can be performed? If the procedure succeeds—that is, A and B are decorrelated—then the claim that A causes B is refuted, or at least weakened (depending upon the details of the case). But if the bilking attempt fails, it does not follow that it must be B that is the cause of A , rather than vice versa. Depending upon the situation, that B causes A might become a viable alternative to the hypothesis that A causes B —but there is no reason to think that this alternative must always be the superior one. For example, suppose that I see a photo of you in a paper dated well before your birth, accompanied by a report of your arrival from the future. I now try to bilk your upcoming time trip—but I slip on a banana peel while rushing to push you away from your time machine, my time travel horror stories only inspire you further, and so on. Or again, suppose that I know that you were not in Sydney yesterday. I now try to get you to go there in your time machine—but first I am struck by lightning, then I fall down a manhole, and so on. What does all this prove? Surely not that your arrival in the past causes your departure from the future. Depending upon the details of the case, it seems that we might well be entitled to describe it as involving backwards time travel and backwards causation. At least, if we are not so entitled, this must be because of other facts about the case: it would not follow simply from the repeated coincidental failures of my bilking attempts.

Backwards time travel would apparently allow for the possibility of causal loops, in which things come from nowhere. The things in question might be objects—imagine a time traveller who steals a time machine from the local museum in order to make his time trip and then donates the time machine to the same museum at the end of the trip (i.e. in the past). In this case the machine itself is never built by anyone—it simply exists. The things in question might be information—imagine a time traveller who explains the theory behind time travel to her younger self: theory that she herself knows only because it was explained to her in her youth by her time travelling older self. The things in question might be actions. Imagine a time traveller who visits his younger self. When he encounters his younger self, he suddenly has a vivid memory of being punched on the nose by a strange visitor. He realises that this is that very encounter—and resignedly proceeds to punch his younger self. Why did he do it? Because he knew that it would happen and so felt that he had to do it—but he only knew it would happen because he in fact did it. [ 20 ]

One might think that causal loops are impossible—and hence that insofar as backwards time travel entails such loops, it too is impossible. [ 21 ] There are two issues to consider here. First, does backwards time travel entail causal loops? Lewis (1976, 148) raises the question whether there must be causal loops whenever there is backwards causation; in response to the question, he says simply “I am not sure.” Mellor (1998, 131) appears to claim a positive answer to the question. [ 22 ] Hanley (2004, 130) defends a negative answer by telling a time travel story in which there is backwards time travel and backwards causation, but no causal loops. [ 23 ] Monton (2009) criticises Hanley’s counterexample, but also defends a negative answer via different counterexamples. Effingham (2020) too argues for a negative answer.

Second, are causal loops impossible, or in some other way objectionable? One objection is that causal loops are inexplicable . There have been two main kinds of response to this objection. One is to agree but deny that this is a problem. Lewis (1976, 149) accepts that a loop (as a whole) would be inexplicable—but thinks that this inexplicability (like that of the Big Bang or the decay of a tritium atom) is merely strange, not impossible. In a similar vein, Meyer (2012, 263) argues that if someone asked for an explanation of a loop (as a whole), “the blame would fall on the person asking the question, not on our inability to answer it.” The second kind of response (Hanley, 2004, §5) is to deny that (all) causal loops are inexplicable. A second objection to causal loops, due to Mellor (1998, ch.12), is that in such loops the chances of events would fail to be related to their frequencies in accordance with the law of large numbers. Berkovitz (2001) and Dowe (2001) both argue that Mellor’s objection fails to establish the impossibility of causal loops. [ 24 ] Effingham (2020) considers—and rebuts—some additional objections to the possibility of causal loops.

4. Time and Change

Gödel (1949a [1990a])—in which Gödel presents models of Einstein’s General Theory of Relativity in which there exist CTC’s—can well be regarded as initiating the modern academic literature on time travel, in both philosophy and physics. In a companion paper, Gödel discusses the significance of his results for more general issues in the philosophy of time (Gödel 1949b [1990b]). For the succeeding half century, the time travel literature focussed predominantly on objections to the possibility (or probability) of time travel. More recently, however, there has been renewed interest in the connections between time travel and more general issues in the metaphysics of time and change. We examine some of these in the present section. [ 25 ]

The first thing that we need to do is set up the various metaphysical positions whose relationships with time travel will then be discussed. Consider two metaphysical questions:

  • Are the past, present and future equally real?
  • Is there an objective flow or passage of time, and an objective now?

We can label some views on the first question as follows. Eternalism is the view that past and future times, objects and events are just as real as the present time and present events and objects. Nowism is the view that only the present time and present events and objects exist. Now-and-then-ism is the view that the past and present exist but the future does not. We can also label some views on the second question. The A-theory answers in the affirmative: the flow of time and division of events into past (before now), present (now) and future (after now) are objective features of reality (as opposed to mere features of our experience). Furthermore, they are linked: the objective flow of time arises from the movement, through time, of the objective now (from the past towards the future). The B-theory answers in the negative: while we certainly experience now as special, and time as flowing, the B-theory denies that what is going on here is that we are detecting objective features of reality in a way that corresponds transparently to how those features are in themselves. The flow of time and the now are not objective features of reality; they are merely features of our experience. By combining answers to our first and second questions we arrive at positions on the metaphysics of time such as: [ 26 ]

  • the block universe view: eternalism + B-theory
  • the moving spotlight view: eternalism + A-theory
  • the presentist view: nowism + A-theory
  • the growing block view: now-and-then-ism + A-theory.

So much for positions on time itself. Now for some views on temporal objects: objects that exist in (and, in general, change over) time. Three-dimensionalism is the view that persons, tables and other temporal objects are three-dimensional entities. On this view, what you see in the mirror is a whole person. [ 27 ] Tomorrow, when you look again, you will see the whole person again. On this view, persons and other temporal objects are wholly present at every time at which they exist. Four-dimensionalism is the view that persons, tables and other temporal objects are four-dimensional entities, extending through three dimensions of space and one dimension of time. On this view, what you see in the mirror is not a whole person: it is just a three-dimensional temporal part of a person. Tomorrow, when you look again, you will see a different such temporal part. Say that an object persists through time if it is around at some time and still around at a later time. Three- and four-dimensionalists agree that (some) objects persist, but they differ over how objects persist. According to three-dimensionalists, objects persist by enduring : an object persists from t 1 to t 2 by being wholly present at t 1 and t 2 and every instant in between. According to four-dimensionalists, objects persist by perduring : an object persists from t 1 to t 2 by having temporal parts at t 1 and t 2 and every instant in between. Perduring can be usefully compared with being extended in space: a road extends from Melbourne to Sydney not by being wholly located at every point in between, but by having a spatial part at every point in between.

It is natural to combine three-dimensionalism with presentism and four-dimensionalism with the block universe view—but other combinations of views are certainly possible.

Gödel (1949b [1990b]) argues from the possibility of time travel (more precisely, from the existence of solutions to the field equations of General Relativity in which there exist CTC’s) to the B-theory: that is, to the conclusion that there is no objective flow or passage of time and no objective now. Gödel begins by reviewing an argument from Special Relativity to the B-theory: because the notion of simultaneity becomes a relative one in Special Relativity, there is no room for the idea of an objective succession of “nows”. He then notes that this argument is disrupted in the context of General Relativity, because in models of the latter theory to date, the presence of matter does allow recovery of an objectively distinguished series of “nows”. Gödel then proposes a new model (Gödel 1949a [1990a]) in which no such recovery is possible. (This is the model that contains CTC’s.) Finally, he addresses the issue of how one can infer anything about the nonexistence of an objective flow of time in our universe from the existence of a merely possible universe in which there is no objectively distinguished series of “nows”. His main response is that while it would not be straightforwardly contradictory to suppose that the existence of an objective flow of time depends on the particular, contingent arrangement and motion of matter in the world, this would nevertheless be unsatisfactory. Responses to Gödel have been of two main kinds. Some have objected to the claim that there is no objective flow of time in his model universe (e.g. Savitt (2005); see also Savitt (1994)). Others have objected to the attempt to transfer conclusions about that model universe to our own universe (e.g. Earman (1995, 197–200); for a partial response to Earman see Belot (2005, §3.4)). [ 28 ]

Earlier we posed two questions:

Gödel’s argument is related to the second question. Let’s turn now to the first question. Godfrey-Smith (1980, 72) writes “The metaphysical picture which underlies time travel talk is that of the block universe [i.e. eternalism, in the terminology of the present entry], in which the world is conceived as extended in time as it is in space.” In his report on the Analysis problem to which Godfrey-Smith’s paper is a response, Harrison (1980, 67) replies that he would like an argument in support of this assertion. Here is an argument: [ 29 ]

A fundamental requirement for the possibility of time travel is the existence of the destination of the journey. That is, a journey into the past or the future would have to presuppose that the past or future were somehow real. (Grey, 1999, 56)

Dowe (2000, 442–5) responds that the destination does not have to exist at the time of departure: it only has to exist at the time of arrival—and this is quite compatible with non-eternalist views. And Keller and Nelson (2001, 338) argue that time travel is compatible with presentism:

There is four-dimensional [i.e. eternalist, in the terminology of the present entry] time-travel if the appropriate sorts of events occur at the appropriate sorts of times; events like people hopping into time-machines and disappearing, people reappearing with the right sorts of memories, and so on. But the presentist can have just the same patterns of events happening at just the same times. Or at least, it can be the case on the presentist model that the right sorts of events will happen, or did happen, or are happening, at the rights sorts of times. If it suffices for four-dimensionalist time-travel that Jennifer disappears in 2054 and appears in 1985 with the right sorts of memories, then why shouldn’t it suffice for presentist time-travel that Jennifer will disappear in 2054, and that she did appear in 1985 with the right sorts of memories?

Sider (2005) responds that there is still a problem reconciling presentism with time travel conceived in Lewis’s way: that conception of time travel requires that personal time is similar to external time—but presentists have trouble allowing this. Further contributions to the debate whether presentism—and other versions of the A-theory—are compatible with time travel include Monton (2003), Daniels (2012), Hall (2014) and Wasserman (2018) on the side of compatibility, and Miller (2005), Slater (2005), Miller (2008), Hales (2010) and Markosian (2020) on the side of incompatibility.

Leibniz’s Law says that if x = y (i.e. x and y are identical—one and the same entity) then x and y have exactly the same properties. There is a superficial conflict between this principle of logic and the fact that things change. If Bill is at one time thin and at another time not so—and yet it is the very same person both times—it looks as though the very same entity (Bill) both possesses and fails to possess the property of being thin. Three-dimensionalists and four-dimensionalists respond to this problem in different ways. According to the four-dimensionalist, what is thin is not Bill (who is a four-dimensional entity) but certain temporal parts of Bill; and what is not thin are other temporal parts of Bill. So there is no single entity that both possesses and fails to possess the property of being thin. Three-dimensionalists have several options. One is to deny that there are such properties as ‘thin’ (simpliciter): there are only temporally relativised properties such as ‘thin at time t ’. In that case, while Bill at t 1 and Bill at t 2 are the very same entity—Bill is wholly present at each time—there is no single property that this one entity both possesses and fails to possess: Bill possesses the property ‘thin at t 1 ’ and lacks the property ‘thin at t 2 ’. [ 30 ]

Now consider the case of a time traveller Ben who encounters his younger self at time t . Suppose that the younger self is thin and the older self not so. The four-dimensionalist can accommodate this scenario easily. Just as before, what we have are two different three-dimensional parts of the same four-dimensional entity, one of which possesses the property ‘thin’ and the other of which does not. The three-dimensionalist, however, faces a problem. Even if we relativise properties to times, we still get the contradiction that Ben possesses the property ‘thin at t ’ and also lacks that very same property. [ 31 ] There are several possible options for the three-dimensionalist here. One is to relativise properties not to external times but to personal times (Horwich, 1975, 434–5); another is to relativise properties to spatial locations as well as to times (or simply to spacetime points). Sider (2001, 101–6) criticises both options (and others besides), concluding that time travel is incompatible with three-dimensionalism. Markosian (2004) responds to Sider’s argument; [ 32 ] Miller (2006) also responds to Sider and argues for the compatibility of time travel and endurantism; Gilmore (2007) seeks to weaken the case against endurantism by constructing analogous arguments against perdurantism. Simon (2005) finds problems with Sider’s arguments, but presents different arguments for the same conclusion; Effingham and Robson (2007) and Benovsky (2011) also offer new arguments for this conclusion. For further discussion see Wasserman (2018) and Effingham (2020). [ 33 ]

We have seen arguments to the conclusions that time travel is impossible, improbable and inexplicable. Here’s an argument to the conclusion that backwards time travel simply will not occur. If backwards time travel is ever going to occur, we would already have seen the time travellers—but we have seen none such. [ 34 ] The argument is a weak one. [ 35 ] For a start, it is perhaps conceivable that time travellers have already visited the Earth [ 36 ] —but even granting that they have not, this is still compatible with the future actuality of backwards time travel. First, it may be that time travel is very expensive, difficult or dangerous—or for some other reason quite rare—and that by the time it is available, our present period of history is insufficiently high on the list of interesting destinations. Second, it may be—and indeed existing proposals in the physics literature have this feature—that backwards time travel works by creating a CTC that lies entirely in the future: in this case, backwards time travel becomes possible after the creation of the CTC, but travel to a time earlier than the time at which the CTC is created is not possible. [ 37 ]

  • Adams, Robert Merrihew, 1997, “Thisness and time travel”, Philosophia , 25: 407–15.
  • Arntzenius, Frank, 2006, “Time travel: Double your fun”, Philosophy Compass , 1: 599–616. doi:10.1111/j.1747-9991.2006.00045.x
  • Asimov, Isaac, 1995 [2003], Gold: The Final Science Fiction Collection , New York: Harper Collins.
  • Baron, Sam and Colyvan, Mark, 2016, “Time enough for explanation”, Journal of Philosophy , 113: 61–88.
  • Belot, Gordon, 2005, “Dust, time and symmetry”, British Journal for the Philosophy of Science , 56: 255–91.
  • Benovsky, Jiri, 2011, “Endurance and time travel”, Kriterion , 24: 65–72.
  • Berkovitz, Joseph, 2001, “On chance in causal loops”, Mind , 110: 1–23.
  • Black, Max, 1956, “Why cannot an effect precede its cause?”, Analysis , 16: 49–58.
  • Brier, Bob, 1973, “Magicians, alarm clocks, and backward causation”, Southern Journal of Philosophy , 11: 359–64.
  • Carlson, Erik, 2005, “A new time travel paradox resolved”, Philosophia , 33: 263–73.
  • Carroll, John W., 2010, “Context, conditionals, fatalism, time travel, and freedom”, in Time and Identity , Joseph Keim Campbell, Michael O’Rourke, and Harry S. Silverstein, eds., Cambridge MA: MIT Press, 79–93.
  • Craig, William L., 1997, “Adams on actualism and presentism”, Philosophia , 25: 401–5.
  • Daniels, Paul R., 2012, “Back to the present: Defending presentist time travel”, Disputatio , 4: 469–84.
  • Deutsch, David and Lockwood, Michael, 1994, “The quantum physics of time travel”, Scientific American , 270(3): 50–6.
  • Dowe, Phil, 2000, “The case for time travel”, Philosophy , 75: 441–51.
  • –––, 2001, “Causal loops and the independence of causal facts”, Philosophy of Science , 68: S89–S97.
  • –––, 2003, “The coincidences of time travel”, Philosophy of Science , 70: 574–89.
  • Dummett, Michael, 1964, “Bringing about the past”, Philosophical Review , 73: 338–59.
  • Dwyer, Larry, 1977, “How to affect, but not change, the past”, Southern Journal of Philosophy , 15: 383–5.
  • Earman, John, 1995, Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes , New York: Oxford University Press.
  • Effingham, Nikk, 2020, Time Travel: Probability and Impossibility , Oxford: Oxford University Press.
  • Effingham, Nikk and Robson, Jon, 2007, “A mereological challenge to endurantism”, Australasian Journal of Philosophy , 85: 633–40.
  • Ehring, Douglas, 1997, “Personal identity and time travel”, Philosophical Studies , 52: 427–33.
  • Elliott, Katrina, 2019, “How to Know That Time Travel Is Unlikely Without Knowing Why”, Pacific Philosophical Quarterly , 100: 90–113.
  • Fulmer, Gilbert, 1980, “Understanding time travel”, Southwestern Journal of Philosophy , 11: 151–6.
  • Gilmore, Cody, 2007, “Time travel, coinciding objects, and persistence”, in Oxford Studies in Metaphysics , Dean W. Zimmerman, ed., Oxford: Clarendon Press, vol. 3, 177–98.
  • Goddu, G.C., 2003, “Time travel and changing the past (or how to kill yourself and live to tell the tale)”, Ratio , 16: 16–32.
  • –––, 2007, “Banana peels and time travel”, Dialectica , 61: 559–72.
  • Gödel, Kurt, 1949a [1990a], “An example of a new type of cosmological solutions of Einstein’s field equations of gravitation”, in Kurt Gödel: Collected Works (Volume II), Solomon Feferman, et al. (eds.), New York: Oxford University Press, 190–8; originally published in Reviews of Modern Physics , 21 (1949): 447–450.
  • –––, 1949b [1990b], “A remark about the relationship between relativity theory and idealistic philosophy”, in Kurt Gödel: Collected Works (Volume II), Solomon Feferman, et al. (eds.), New York: Oxford University Press, 202–7; originally published in P. Schilpp (ed.), Albert Einstein: Philosopher-Scientist , La Salle: Open Court, 1949, 555–562.
  • Godfrey-Smith, William, 1980, “Travelling in time”, Analysis , 40: 72–3.
  • Gorovitz, Samuel, 1964, “Leaving the past alone”, Philosophical Review , 73: 360–71.
  • Grey, William, 1999, “Troubles with time travel”, Philosophy , 74: 55–70.
  • Hafele, J. C. and Keating, Richard E., 1972a, “Around-the-world atomic clocks: Observed relativistic time gains”, Science , 177: 168–70.
  • –––, 1972b, “Around-the-world atomic clocks: Predicted relativistic time gains”, Science , 177: 166–8.
  • Hales, Steven D., 2010, “No time travel for presentists”, Logos & Episteme , 1: 353–60.
  • Hall, Thomas, 2014, “In Defense of the Compossibility of Presentism and Time Travel”, Logos & Episteme , 2: 141–59.
  • Hanley, Richard, 2004, “No end in sight: Causal loops in philosophy, physics and fiction”, Synthese , 141: 123–52.
  • Harrison, Jonathan, 1980, “Report on analysis ‘problem’ no. 18”, Analysis , 40: 65–9.
  • Hawking, S.W., 1992, “Chronology protection conjecture”, Physical Review D , 46: 603–11.
  • Holt, Dennis Charles, 1981, “Time travel: The time discrepancy paradox”, Philosophical Investigations , 4: 1–16.
  • Horacek, David, 2005, “Time travel in indeterministic worlds”, Monist (Special Issue on Time Travel), 88: 423–36.
  • Horwich, Paul, 1975, “On some alleged paradoxes of time travel”, Journal of Philosophy , 72: 432–44.
  • –––, 1987, Asymmetries in Time: Problems in the Philosophy of Science , Cambridge MA: MIT Press.
  • Ismael, J., 2003, “Closed causal loops and the bilking argument”, Synthese , 136: 305–20.
  • Keller, Simon and Nelson, Michael, 2001, “Presentists should believe in time-travel”, Australasian Journal of Philosophy , 79: 333–45.
  • Kiourti, Ira, 2008, “Killing baby Suzy”, Philosophical Studies , 139: 343–52.
  • Le Poidevin, Robin, 2003, Travels in Four Dimensions: The Enigmas of Space and Time , Oxford: Oxford University Press.
  • –––, 2005, “The Cheshire Cat problem and other spatial obstacles to backwards time travel”, Monist (Special Issue on Time Travel), 88: 336–52.
  • Lewis, David, 1976, “The paradoxes of time travel”, American Philosophical Quarterly , 13: 145–52.
  • Loss, Roberto, 2015, “How to Change the Past in One-Dimensional Time”, Pacific Philosophical Quarterly , 96: 1–11.
  • Luminet, Jean-Pierre, 2011, “Time, topology, and the twin paradox”, in The Oxford Handbook of Philosophy of Time , Craig Callender (ed.), Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780199298204.003.0018
  • Markosian, Ned, 2004, “Two arguments from Sider’s Four-Dimensionalism ”, Philosophy and Phenomenological Research , 68: 665–73.
  • Markosian, Ned, 2020, “The Dynamic Theory of Time and Time Travel to the Past”, Disputatio , 12: 137–65.
  • Maudlin, Tim, 2012, Philosophy of Physics: Space and Time , Princeton: Princeton University Press.
  • Meiland, Jack W., 1974, “A two-dimensional passage model of time for time travel”, Philosophical Studies , 26: 153–73.
  • Mellor, D.H., 1998, Real Time II , London: Routledge.
  • Meyer, Ulrich, 2012, “Explaining causal loops”, Analysis , 72: 259–64.
  • Miller, Kristie, 2005, “Time travel and the open future”, Disputatio , 1: 223–32.
  • –––, 2006, “Travelling in time: How to wholly exist in two places at the same time”, Canadian Journal of Philosophy , 36: 309–34.
  • –––, 2008, “Backwards causation, time, and the open future”, Metaphysica , 9: 173–91.
  • Monton, Bradley, 2003, “Presentists can believe in closed timelike curves”, Analysis , 63: 199–202.
  • –––, 2009, “Time travel without causal loops”, Philosophical Quarterly , 59: 54–67.
  • Nerlich, Graham, 1981, “Can time be finite?”, Pacific Philosophical Quarterly , 62: 227–39.
  • Ney, S.E., 2000, “Are grandfathers an endangered species?”, Journal of Philosophical Research , 25: 311–21.
  • Price, Huw, 1996, Time’s Arrow & Archimedes’ Point: New Directions for the Physics of Time , New York: Oxford University Press.
  • Putnam, Hilary, 1975, “It ain’t necessarily so”, in Mathematics, Matter and Method , Cambridge: Cambridge University Press, vol. 1 of Philosophical Papers , 237–49.
  • Reinganum, Marc R., 1986, “Is time travel impossible? A financial proof”, Journal of Portfolio Management , 13: 10–2.
  • Riggs, Peter J., 1991, “A critique of Mellor’s argument against ‘backwards’ causation”, British Journal for the Philosophy of Science , 42: 75–86.
  • –––, 1997, “The principal paradox of time travel”, Ratio , 10: 48–64.
  • Savitt, Steven, 1994, “The replacement of time”, Australasian Journal of Philosophy , 74: 463–73.
  • –––, 2005, “Time travel and becoming”, Monist (Special Issue on Time Travel), 88: 413–22.
  • Sider, Theodore, 2001, Four-Dimensionalism: An Ontology of Persistence and Time , Oxford: Clarendon Press.
  • –––, 2002, “Time travel, coincidences and counterfactuals”, Philosophical Studies , 110: 115–38.
  • –––, 2004, “Replies to Gallois, Hirsch and Markosian”, Philosophy and Phenomenological Research , 68: 674–87.
  • –––, 2005, “Traveling in A- and B- time”, Monist (Special Issue on Time Travel), 88: 329–35.
  • Simon, Jonathan, 2005, “Is time travel a problem for the three-dimensionalist?”, Monist (Special Issue on Time Travel), 88: 353–61.
  • Slater, Matthew H., 2005, “The necessity of time travel (on pain of indeterminacy)”, Monist (Special Issue on Time Travel), 88: 362–9.
  • Smart, J.J.C., 1963, “Is time travel possible?”, Journal of Philosophy , 60: 237–41.
  • Smeenk, Chris and Wüthrich, Christian, 2011, “Time travel and time machines”, in The Oxford Handbook of Philosophy of Time , Craig Callender (ed.), Oxford: Oxford University Press, online ed. doi:10.1093/oxfordhb/9780199298204.003.0021
  • Smith, Joseph Wayne, 1985, “Time travel and backward causation”, Cogito , 3: 57–67.
  • Smith, Nicholas J.J., 1997, “Bananas enough for time travel?”, British Journal for the Philosophy of Science , 48: 363–89.
  • –––, 1998, “The problems of backward time travel”, Endeavour , 22(4): 156–8.
  • –––, 2004, “Review of Robin Le Poidevin Travels in Four Dimensions: The Enigmas of Space and Time ”, Australasian Journal of Philosophy , 82: 527–30.
  • –––, 2005, “Why would time travellers try to kill their younger selves?”, Monist (Special Issue on Time Travel), 88: 388–95.
  • –––, 2011, “Inconsistency in the A-theory”, Philosophical Studies , 156: 231–47.
  • –––, 2015, “Why time travellers (still) cannot change the past”, Revista Portuguesa de Filosofia , 71: 677–94.
  • –––, 2017, “I’d do anything to change the past (but I can’t do ‘that’)”, American Philosophical Quarterly , 54: 153–68.
  • van Inwagen, Peter, 2010, “Changing the past”, in Oxford Studies in Metaphysics (Volume 5), Dean W. Zimmerman (ed.), Oxford: Oxford University Press, 3–28.
  • Vihvelin, Kadri, 1996, “What time travelers cannot do”, Philosophical Studies , 81: 315–30.
  • Vranas, Peter B.M., 2005, “Do cry over spilt milk: Possibly you can change the past”, Monist (Special Issue on Time Travel), 88: 370–87.
  • –––, 2009, “Can I kill my younger self? Time travel and the retrosuicide paradox”, Pacific Philosophical Quarterly , 90: 520–34.
  • –––, 2010, “What time travelers may be able to do”, Philosophical Studies , 150: 115–21.
  • Wasserman, Ryan, 2018, Paradoxes of Time Travel , Oxford: Oxford University Press.
  • Williams, Donald C., 1951, “The myth of passage”, Journal of Philosophy , 48: 457–72.
  • Wright, John, 2006, “Personal identity, fission and time travel”, Philosophia , 34: 129–42.
  • Yourgrau, Palle, 1999, Gödel Meets Einstein: Time Travel in the Gödel Universe , Chicago: Open Court.
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Time Travel , entry by Joel Hunter (Truckee Meadows Community College) in the Internet Encyclopedia of Philosophy .

causation: backward | free will: divine foreknowledge and | identity: over time | location and mereology | temporal parts | time | time machines | time travel: and modern physics

Copyright © 2024 by Nicholas J.J. Smith < nicholas . smith @ sydney . edu . au >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

SciTechDaily

  • April 24, 2024 | Quantum Computing Meets Genomics: The Dawn of Hyper-Fast DNA Analysis
  • April 24, 2024 | Scientists Turn to Venus in the Search for Alien Life
  • April 24, 2024 | NASA Astronauts Enter Quarantine As Boeing Starliner Test Flight Approaches
  • April 23, 2024 | Peeking Inside Protons: Supercomputers Reveal Quark Secrets
  • April 23, 2024 | A Cheaper and More Sustainable Lithium Battery: How LiDFOB Could Change Everything

Exploring the Reality of Time Travel: Science Fact vs. Science Fiction

By Adi Foord, University of Maryland, Baltimore County November 16, 2023

Time Travel Machine Art Concept

Time travel, a longstanding fascination in science fiction, remains a complex and unresolved concept in science. The second law of thermodynamics suggests time can only move forward, while Einstein’s theory of relativity shows time’s relativity to speed. Theoretical ideas like wormholes offer potential methods, but practical challenges and paradoxes, such as the “grandfather paradox,” complicate the feasibility of actual time travel.

Will it ever be possible for time travel to occur?

Have you ever dreamed of traveling through time, like characters do in science fiction movies? For centuries, the concept of time travel has captivated people’s imaginations. Time travel is the concept of moving between different points in time, just like you move between different places. In movies, you might have seen characters using special machines, magical devices or even hopping into a futuristic car to travel backward or forward in time.

But is this just a fun idea for movies, or could it really happen?

The Science Behind Time Travel

The question of whether time is reversible remains one of the biggest unresolved questions in science. If the universe follows the laws of thermodynamics , it may not be possible. The second law of thermodynamics states that things in the universe can either remain the same or become more disordered over time.

It’s a bit like saying you can’t unscramble eggs once they’ve been cooked. According to this law, the universe can never go back exactly to how it was before. Time can only go forward, like a one-way street.

Time Is Relative

However, physicist Albert Einstein’s theory of special relativity suggests that time passes at different rates for different people. Someone speeding along on a spaceship moving close to the speed of light – 671 million miles per hour! – will experience time slower than a person on Earth.

People have yet to build spaceships that can move at speeds anywhere near as fast as light, but astronauts who visit the International Space Station orbit around the Earth at speeds close to 17,500 mph. Astronaut Scott Kelly has spent 520 days at the International Space Station, and as a result has aged a little more slowly than his twin brother – and fellow astronaut – Mark Kelly. Scott used to be 6 minutes younger than his twin brother. Now, because Scott was traveling so much faster than Mark and for so many days, he is 6 minutes and 5 milliseconds younger .

Theoretical Possibilities and Challenges

Some scientists are exploring other ideas that could theoretically allow time travel. One concept involves wormholes, or hypothetical tunnels in space that could create shortcuts for journeys across the universe. If someone could build a wormhole and then figure out a way to move one end at close to the speed of light – like the hypothetical spaceship mentioned above – the moving end would age more slowly than the stationary end. Someone who entered the moving end and exited the wormhole through the stationary end would come out in their past.

However, wormholes remain theoretical: Scientists have yet to spot one. It also looks like it would be incredibly challenging to send humans through a wormhole space tunnel.

Paradoxes and Failed Dinner Parties

There are also paradoxes associated with time travel. The famous “ grandfather paradox ” is a hypothetical problem that could arise if someone traveled back in time and accidentally prevented their grandparents from meeting. This would create a paradox where you were never born, which raises the question: How could you have traveled back in time in the first place? It’s a mind-boggling puzzle that adds to the mystery of time travel.

Famously, physicist Stephen Hawking tested the possibility of time travel by throwing a dinner party where invitations noting the date, time, and coordinates were not sent out until after it had happened. His hope was that his invitation would be read by someone living in the future, who had capabilities to travel back in time. But no one showed up.

As he pointed out : “The best evidence we have that time travel is not possible, and never will be, is that we have not been invaded by hordes of tourists from the future.”

James Webb Space Telescope Artist Conception

Artist’s rendering of the James Webb Space Telescope. Credit: Northrop Grumman

Telescopes Are Time Machines

Interestingly, astrophysicists armed with powerful telescopes possess a unique form of time travel . As they peer into the vast expanse of the cosmos, they gaze into the past universe. Light from all galaxies and stars takes time to travel, and these beams of light carry information from the distant past. When astrophysicists observe a star or a galaxy through a telescope, they are not seeing it as it is in the present, but as it existed when the light began its journey to Earth millions to billions of years ago.

NASA’s newest space telescope , the James Webb Space Telescope , is peering at galaxies that were formed at the very beginning of the Big Bang , about 13.7 billion years ago.

While we aren’t likely to have time machines like the ones in movies anytime soon, scientists are actively researching and exploring new ideas. But for now, we’ll have to enjoy the idea of time travel in our favorite books, movies, and dreams.

Written by Adi Foord, Assistant Professor of Astronomy and Astrophysics, University of Maryland, Baltimore County.

More on SciTechDaily

Tropical Cyclone Art

A Significant Surge: How Tropical Cyclones Increase the Cost of Carbon

NASA Voyager 1 Spacecraft Traveling Through Interstellar Space

Voyager’s New Horizon: NASA Engineers Tackle Thruster Buildup & Software Glitches

what is time travel used for

New ScienceCast Video Previews the ‘Opposition of Mars’

NASA Nancy Grace Roman Space Telescope

“Our Solar System May Be Unusual”: Rogue Planets Unveiled With NASA’s Roman Space Telescope

Debris Space Lasers

AI-Powered Lasers: A Modern Solution to Space Debris

Woman Irritable Bowel Syndrome (IBS) Stomach Pain

IBS Relief: Common Drug Improves Symptoms of Irritable Bowel Syndrome

Adult Wing Precursor Imaginal Cells of Drosophila melanogaster

Scientists Discover Chinmo – “The Youth Gene”

Europa Charge Particle Radiation

Jupiter’s Moon Europa Could Be Pulling Oxygen Down Below the Ice To Feed Life

8 comments on "exploring the reality of time travel: science fact vs. science fiction".

what is time travel used for

Until the problem of the second law of thermodynamics(entropy) is solved, the concept of time travel will remain the subject of science fiction. Since this is a basic law of our universe, there is no conceivable way that we know of to do this. The great thing about our knowledge of the universe is that it continues to grow and with that our view of what is possible continues to change. After all, at one time it was believed we could never leave earth!

what is time travel used for

The 7 planets are soul pollen in the space @ life has been the world has been prepared @ The pollen of the universe is hidden @ Around the axis of the galaxy, the universe is hidden@@ The pollen of the galaxies is a hidden cluster Itis made that we thought about what wisdom is in God’s work and how it is arranged in the form of words.The verse that is made is as follows @@ John, you are in time @ worlds, planets around the axis of the branches of galaxies @@ 8 Prophets, divine prophets, God-aware witnesses @ God’s words of revelation, they are aware @@ 48 What the words of revelation that every prophet has about @ sometimes Sometimes the message of God has become a verbal cliché in the head @@ 62 The message of God was given to every prophet @ The message was made around the power of God @@ 46 The truth of the religions of the cradle of time is said in the world @ Prophets always came for justice in time @@ 62 A warrior became brave in time @ Delaver Ghahrmani Boud Taarani@@ 43 Omar Noah never died, who knows!@ Imransan Is there an unseen world, immortality!?@@ 49 Men’s rights in the sign @ Human rights, the observance of world justice @@ 40 We have God’s love @ A love that is not patched, separation!!!: @@ 39 Take one word from the end of the first and second stanzas to the bottom of these eight verbal verses, and this sentence is made @@ God-aware, the world is born, you know the sign of God @ Agah,the beginning of time, the world, eternity, the world of separation @@ The meaning of this sentence is That God, who before us humans lived on the earth, formed the earth’s crusts with full knowledge, and we humans know the sign of God, which is on the earth, on the continents and countries, and some names have been shown by God for our knowledge since the end of time.In a later video, if I have a lifetime left, I will explain exactly about these poems, God willing @@ The word of the Prophet 17 is the 17th and Muhammad (PBUH) said that the Bedouin Arabs should pray 17 rakats so that theyperform ablution and be clean and not kill and loot.From the caravans, these were all God’s will, and he is good everywhere, in every nation, God does not like evildoers, sinners, and oppressors.Muhammad (PBUH) was God’s last messenger to the Arab people, he was God’s best prophet, and the third verse is because they do not accept Muhammad (PBUH).Some Iranians who were in contact with me, that’s why in the third verse of this surah, he said that his message was given to every prophet, the message is based on divine power, and the word truth, the first two letters of which istruth, is truth, and truth is the 43rd and forty-third word, and the word is time.It is exactly 46, and this song of the Prophets was revealed at the age of 46 ببخشید اگر قبلآ مطالبی فرستادم که به مذاهب مذاهم ارتباط داد شاید به درد شما نمیخورد من در کامنت های بعدی سعی میکنم از نجوم و حیات زمین سخن بگویم این چند بیت را به خارجی انگلیسی که تبدیل کردم معنی آن حیرت انگیز تعغیر کرد گفتم برای شما بفرستم و بداند که این کلام من نبوده کلام خداوند بوده شما نظرتان در مورد خداوند چیست من میگویم خداوند که پدر ومادر انسان بودند قادر به ساختن ما بودند اما آیا آنها قادر به ساختن ستاره ها هم بودند

what is time travel used for

Your comment has validity to God. But it surely has no place here, it is only fare if the hole comment were in english and has less of a convincing push in a belief a person either believes or not.

It’s too bad physics can’t come to a complete consensus about time, I would like to add some thought about discoveries it has been proven that time travels in only one direction forward, the experiment dealt with light thru glass and how it reacts in the middle and what change happens after light exits the other side, a simple explanation of this experiment. Brings me to theorize and start that time existed before the big bang and is outside of our universes influence, when time is acted on by gravity the ( Form ) of time is changed until the influence no longer has effect, this could go hand in hand with light photons the photon has a influence in the Form that time has. This can not be a observed difference unless we were to see beyond the speed of light. We do agree that physics changes at a subatomic state and also does some strange changing once the speed of light has been exceeded.

The experiment I referred to was posted on IFL in October 2023 headlined ( Solution to complex light problem shows that time can only go Forward ).

what is time travel used for

One of the problem with travel time is the one people keep forever. And, that is that the earth is always move through space. Matter of fact, the earth is not in the same place that it was 50 years ago. So you will have to move through space as well as time.

Ironically, the only science fiction that seems to handle this is the original story “The Time Machine”.

what is time travel used for

Time travel is happening now. It has been done since the 1950s. The method satisfies all the requirements. Traveler can’t change the past, but only observe. You can’t go farther back than when the machine was first invented (1950s). There’s one more limitation, you can only observe what the machine was directed. The time machine, the common video camera, and video tape recorder. Now it’s the camera, and file capture computer. Yes, viewing a video tape is effectively going back in time. It’s more than the video, it’s the sound too. There are working versions of smell, and touch which can be recorded too. If you record, and replicate all the senses, you have effectively complete time travel. The most primitive form is the picture. This technology has been around for thousands of years, and is manually intensive. Later many pictures were strung together to make a film. Using a camera to record film was the first example of complete visual time travel (back to when the film was made). Later sound was added, and we have the movies. A way of going back in time that included sight, and sound. Now we have video systems (YouTub) that can play back past events selected by you. Yes, video systems are virtual time travel machines we have now.

How Stellar Cannibalism Illuminates Cosmic Evolution

جزایر فیلیپین دایناسوری که توسط انسان خلق شده در بیش ده ها میلیون سال و بخاطر ریخته شدن دوهزار متر خاک غرق شده بخاطر بالا آمدن آب اقیانوس اما جزایر فیلیپین شبیه دایناسوریست

The address of the above comment on the site about a thief who was trained by a dinosaur bird who was trained by humans tens of millions of years ago and who arrested murderers and robbers.The police were arrested by big birds.don’t the scientists of the world think about this?They were buried in the bed of important cities, they were buried with all the tools and machines, the traces of humans tens of millions of years ago, they had a civilization and a history of hundreds of thousands of years, they built a base underthe earth, from the meteorites that explode from the planets when they hit the sun, and they knew that several thousand meters of soil is poured on the surface of the seas and islands, and they knew that the shapes they made of the islands in thecountry of Papua may go under the ocean, of course, the Philippine islands.The picture is of a baby dinosaur that went under the ocean, but the northern island of Australia, which is Papua, is quite clear.It is a big dinosaur whose tail is towards the east and its mouth is open towards the west.There is the Philippines, but it was more difficult to take the soil to the Philippine islands to create a dinosaur than the island of Papua, that is why the height of the soil in the Philippines is lower, and when the meteorites fell a few kilometerson the surface of the ocean, the image created by humans under the ocean in the shape of a dinosaur is hidden in the American continent The picture is of a bird in the shape of a dinosaur that is flying, and this bird was made to flyby the Indians of the tribe, that bird was talking to people, but its spirit might have heard something from the police because a thief while in the bird’s mouth He was handcuffed by the police and the weapon, which is a machine gun, is fromthe east of the American continent on the coast

The country of Florida is a machine gun.When you continue to New York City, you will reach the mouth of the dinosaur, where a thief is trapped in the mouth of a bird, and the little finger of the police handcuffed the thief’s hand, and a small colt is in the hand ofthe thief, who the police caught in the mouth of the dinosaur.put in the mouth of the bird dinosaur, you can clearly see that the thief fell on the ground and was shot in the head, and it is clear that his forehead was pierced, the bird’s mouth is open in flight, the head of the birdis from the east of the American continent, and a fish is placed in the bird’s mouth in the water of the ocean.The stretched glove of the police, which is in the form of a fist, with a handcuff attached to the left hand of the thief who fell on the ground in the sea and the mouth of the bird, the head of the thief and the killer, is located towards the southwest and west coast of America.All these images were created from the American continent and islands by Humans were created, but they didn’t have enough fuel and time to create more accurate images and meteorites ruined the beauty of the images, but it is clear that all these changes were createdby humans, but you have to consider that two thousand meters of soil from meteorites are fish.And they buried the whales under the beaches, and after a very long time, the bodies of the whales turned into oil under the two thousand meters of soil on the beaches, and on the other hand, the presence of two thousand meters of soil onthe surface of the seas and droughts could not make the created images disappear.

Leave a comment Cancel reply

Email address is optional. If provided, your email will not be published or shared.

Save my name, email, and website in this browser for the next time I comment.

Is time travel possible? Why one scientist says we 'cannot ignore the possibility.'

what is time travel used for

A common theme in science-fiction media , time travel is captivating. It’s defined by the late philosopher David Lewis in his essay “The Paradoxes of Time Travel” as “[involving] a discrepancy between time and space time. Any traveler departs and then arrives at his destination; the time elapsed from departure to arrival … is the duration of the journey.”

Time travel is usually understood by most as going back to a bygone era or jumping forward to a point far in the future . But how much of the idea is based in reality? Is it possible to travel through time? 

Is time travel possible?

According to NASA, time travel is possible , just not in the way you might expect. Albert Einstein’s theory of relativity says time and motion are relative to each other, and nothing can go faster than the speed of light , which is 186,000 miles per second. Time travel happens through what’s called “time dilation.”

Time dilation , according to Live Science, is how one’s perception of time is different to another's, depending on their motion or where they are. Hence, time being relative. 

Learn more: Best travel insurance

Dr. Ana Alonso-Serrano, a postdoctoral researcher at the Max Planck Institute for Gravitational Physics in Germany, explained the possibility of time travel and how researchers test theories. 

Space and time are not absolute values, Alonso-Serrano said. And what makes this all more complex is that you are able to carve space-time .

“In the moment that you carve the space-time, you can play with that curvature to make the time come in a circle and make a time machine,” Alonso-Serrano told USA TODAY. 

She explained how, theoretically, time travel is possible. The mathematics behind creating curvature of space-time are solid, but trying to re-create the strict physical conditions needed to prove these theories can be challenging. 

“The tricky point of that is if you can find a physical, realistic, way to do it,” she said. 

Alonso-Serrano said wormholes and warp drives are tools that are used to create this curvature. The matter needed to achieve curving space-time via a wormhole is exotic matter , which hasn’t been done successfully. Researchers don’t even know if this type of matter exists, she said.

“It's something that we work on because it's theoretically possible, and because it's a very nice way to test our theory, to look for possible paradoxes,” Alonso-Serrano added.

“I could not say that nothing is possible, but I cannot ignore the possibility,” she said. 

She also mentioned the anecdote of  Stephen Hawking’s Champagne party for time travelers . Hawking had a GPS-specific location for the party. He didn’t send out invites until the party had already happened, so only people who could travel to the past would be able to attend. No one showed up, and Hawking referred to this event as "experimental evidence" that time travel wasn't possible.

What did Albert Einstein invent?: Discoveries that changed the world

Just Curious for more? We've got you covered

USA TODAY is exploring the questions you and others ask every day. From "How to watch the Marvel movies in order" to "Why is Pluto not a planet?" to "What to do if your dog eats weed?" – we're striving to find answers to the most common questions you ask every day. Head to our Just Curious section to see what else we can answer for you. 

  • Newsletters

Time travel: five ways that we could do it

time travel_travel through time

Cathal O’Connell

Cathal O'Connell is a science writer based in Melbourne.

In 2009 the British physicist Stephen Hawking held a party for time travellers – the twist was he sent out the invites a year later (No guests showed up). Time travel is probably impossible. Even if it were possible, Hawking and others have argued that you could never travel back before the moment your time machine was built.

But travel to the future? That’s a different story.

Of course, we are all time travellers as we are swept along in the current of time, from past to future, at a rate of one hour per hour.

But, as with a river, the current flows at different speeds in different places. Science as we know it allows for several methods to take the fast-track into the future. Here’s a rundown.

050416 timetravel 1

1. Time travel via speed

This is the easiest and most practical way to time travel into the far future – go really fast.

According to Einstein’s theory of special relativity, when you travel at speeds approaching the speed of light, time slows down for you relative to the outside world.

This is not a just a conjecture or thought experiment – it’s been measured. Using twin atomic clocks (one flown in a jet aircraft, the other stationary on Earth) physicists have shown that a flying clock ticks slower, because of its speed.

In the case of the aircraft, the effect is minuscule. But If you were in a spaceship travelling at 90% of the speed of light, you’d experience time passing about 2.6 times slower than it was back on Earth.

And the closer you get to the speed of light, the more extreme the time-travel.

Computer solves a major time travel problem

The highest speeds achieved through any human technology are probably the protons whizzing around the Large Hadron Collider at 99.9999991% of the speed of light. Using special relativity we can calculate one second for the proton is equivalent to 27,777,778 seconds, or about 11 months , for us.

Amazingly, particle physicists have to take this time dilation into account when they are dealing with particles that decay. In the lab, muon particles typically decay in 2.2 microseconds. But fast moving muons, such as those created when cosmic rays strike the upper atmosphere, take 10 times longer to disintegrate.

2. Time travel via gravity

The next method of time travel is also inspired by Einstein. According to his theory of general relativity, the stronger the gravity you feel, the slower time moves.

As you get closer to the centre of the Earth, for example, the strength of gravity increases. Time runs slower for your feet than your head.

Again, this effect has been measured. In 2010, physicists at the US National Institute of Standards and Technology (NIST) placed two atomic clocks on shelves, one 33 centimetres above the other, and measured the difference in their rate of ticking. The lower one ticked slower because it feels a slightly stronger gravity.

To travel to the far future, all we need is a region of extremely strong gravity, such as a black hole. The closer you get to the event horizon, the slower time moves – but it’s risky business, cross the boundary and you can never escape.

050416 timetravel 2

And anyway, the effect is not that strong so it’s probably not worth the trip.

Assuming you had the technology to travel the vast distances to reach a black hole (the nearest is about 3,000 light years away), the time dilation through travelling would be far greater than any time dilation through orbiting the black hole itself.

(The situation described in the movie Interstellar , where one hour on a planet near a black hole is the equivalent of seven years back on Earth, is so extreme as to be impossible in our Universe, according to Kip Thorne, the movie’s scientific advisor.)

Newsletter

The most mindblowing thing, perhaps, is that GPS systems have to account for time dilation effects (due to both the speed of the satellites and gravity they feel) in order to work. Without these corrections, your phones GPS capability wouldn’t be able to pinpoint your location on Earth to within even a few kilometres.

3. Time travel via suspended animation

Another way to time travel to the future may be to slow your perception of time by slowing down, or stopping, your bodily processes and then restarting them later.

Bacterial spores can live for millions of years in a state of suspended animation, until the right conditions of temperature, moisture, food kick start their metabolisms again. Some mammals, such as bears and squirrels, can slow down their metabolism during hibernation, dramatically reducing their cells’ requirement for food and oxygen.

Could humans ever do the same?

Though completely stopping your metabolism is probably far beyond our current technology, some scientists are working towards achieving inducing a short-term hibernation state lasting at least a few hours. This might be just enough time to get a person through a medical emergency, such as a cardiac arrest, before they can reach the hospital.

050416 timetravel 3

In 2005, American scientists demonstrated a way to slow the metabolism of mice (which do not hibernate) by exposing them to minute doses of hydrogen sulphide, which binds to the same cell receptors as oxygen. The core body temperature of the mice dropped to 13 °C and metabolism decreased 10-fold. After six hours the mice could be reanimated without ill effects.

Unfortunately, similar experiments on sheep and pigs were not successful, suggesting the method might not work for larger animals.

Another method, which induces a hypothermic hibernation by replacing the blood with a cold saline solution, has worked on pigs and is currently undergoing human clinical trials in Pittsburgh.

4. Time travel via wormholes

General relativity also allows for the possibility for shortcuts through spacetime, known as wormholes, which might be able to bridge distances of a billion light years or more, or different points in time.

Many physicists, including Stephen Hawking, believe wormholes are constantly popping in and out of existence at the quantum scale, far smaller than atoms. The trick would be to capture one, and inflate it to human scales – a feat that would require a huge amount of energy, but which might just be possible, in theory.

Attempts to prove this either way have failed, ultimately because of the incompatibility between general relativity and quantum mechanics.

5. Time travel using light

Another time travel idea, put forward by the American physicist Ron Mallet, is to use a rotating cylinder of light to twist spacetime. Anything dropped inside the swirling cylinder could theoretically be dragged around in space and in time, in a similar way to how a bubble runs around on top your coffee after you swirl it with a spoon.

According to Mallet, the right geometry could lead to time travel into either the past and the future.

Since publishing his theory in 2000, Mallet has been trying to raise the funds to pay for a proof of concept experiment, which involves dropping neutrons through a circular arrangement of spinning lasers.

His ideas have not grabbed the rest of the physics community however, with others arguing that one of the assumptions of his basic model is plagued by a singularity, which is physics-speak for “it’s impossible”.

The Royal Institution of Australia has an Education resource based on this article. You can access it here .

Related Reading: Computer solves a major time travel problem

what is time travel used for

Originally published by Cosmos as Time travel: five ways that we could do it

Please login to favourite this article.

Life's Little Mysteries

Where Does the Concept of Time Travel Come From?

Time; he's waiting in the wings.

Wormholes have been proposed as one possible means of traveling through time.

The dream of traveling through time is both ancient and universal. But where did humanity's fascination with time travel begin, and why is the idea so appealing?

The concept of time travel — moving through time the way we move through three-dimensional space — may in fact be hardwired into our perception of time . Linguists have recognized that we are essentially incapable of talking about temporal matters without referencing spatial ones. "In language — any language — no two domains are more intimately linked than space and time," wrote Israeli linguist Guy Deutscher in his 2005 book "The Unfolding of Language." "Even if we are not always aware of it, we invariably speak of time in terms of space, and this reflects the fact that we think of time in terms of space."

Deutscher reminds us that when we plan to meet a friend "around" lunchtime, we are using a metaphor, since lunchtime doesn't have any physical sides. He similarly points out that time can not literally be "long" or "short" like a stick, nor "pass" like a train, or even go "forward" or "backward" any more than it goes sideways, diagonal or down.

Related: Why Does Time Fly When You're Having Fun?

Perhaps because of this connection between space and time, the possibility that time can be experienced in different ways and traveled through has surprisingly early roots. One of the first known examples of time travel appears in the Mahabharata, an ancient Sanskrit epic poem compiled around 400 B.C., Lisa Yaszek, a professor of science fiction studies at the Georgia Institute of Technology in Atlanta, told Live Science 

In the Mahabharata is a story about King Kakudmi, who lived millions of years ago and sought a suitable husband for his beautiful and accomplished daughter, Revati. The two travel to the home of the creator god Brahma to ask for advice. But while in Brahma's plane of existence, they must wait as the god listens to a 20-minute song, after which Brahma explains that time moves differently in the heavens than on Earth. It turned out that "27 chatur-yugas" had passed, or more than 116 million years, according to an online summary , and so everyone Kakudmi and Revati had ever known, including family members and potential suitors, was dead. After this shock, the story closes on a somewhat happy ending in that Revati is betrothed to Balarama, twin brother of the deity Krishna. 

Time is fleeting

To Yaszek, the tale provides an example of what we now call time dilation , in which different observers measure different lengths of time based on their relative frames of reference, a part of Einstein's theory of relativity.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Such time-slip stories are widespread throughout the world, Yaszek said, citing a Middle Eastern tale from the first century BCE about a Jewish miracle worker who sleeps beneath a newly-planted carob tree and wakes up 70 years later to find it has now matured and borne fruit (carob trees are notorious for how long they take to produce their first harvest). Another instance can be found in an eighth-century Japanese fable about a fisherman named Urashima Tarō who travels to an undersea palace and falls in love with a princess. Tarō finds that, when he returns home, 100 years have passed, according to a translation of the tale published online by the University of South Florida . 

In the early-modern era of the 1700 and 1800s, the sleep-story version of time travel grew more popular, Yaszek said. Examples include the classic tale of Rip Van Winkle, as well as books like Edward Belamy's utopian 1888 novel "Looking Backwards," in which a man wakes up in the year 2000, and the H.G. Wells 1899 novel "The Sleeper Awakes," about a man who slumbers for centuries and wakes to a completely transformed London. 

Related: Science Fiction or Fact: Is Time Travel Possible ?

In other stories from this period, people also start to be able to move backward in time. In Mark Twain’s 1889 satire "A Connecticut Yankee in King Arthur's Court," a blow to the head propels an engineer back to the reign of the legendary British monarch. Objects that can send someone through time begin to appear as well, mainly clocks, such as in Edward Page Mitchell's 1881 story "The Clock that Went Backwards" or Lewis Carrol's 1889 children's fantasy "Sylvie and Bruno," where the characters possess a watch that is a type of time machine . 

The explosion of such stories during this era might come from the fact that people were "beginning to standardize time, and orient themselves to clocks more frequently," Yaszek said. 

Time after time

Wells provided one of the most enduring time-travel plots in his 1895 novella "The Time Machine," which included the innovation of a craft that can move forward and backward through long spans of time. "This is when we’re getting steam engines and trains and the first automobiles," Yaszek said. "I think it’s no surprise that Wells suddenly thinks: 'Hey, maybe we can use a vehicle to travel through time.'"

Because it is such a rich visual icon, many beloved time-travel stories written after this have included a striking time machine, Yaszek said, referencing The Doctor's blue police box — the TARDIS — in the long-running BBC series "Doctor Who," and "Back to the Future"'s silver luxury speedster, the DeLorean . 

More recently, time travel has been used to examine our relationship with the past, Yaszek said, in particular in pieces written by women and people of color. Octavia Butler's 1979 novel "Kindred" about a modern woman who visits her pre-Civil-War ancestors is "a marvelous story that really asks us to rethink black and white relations through history," she said. And a contemporary web series called " Send Me " involves an African-American psychic who can guide people back to antebellum times and witness slavery. 

"I'm really excited about stories like that," Yaszek said. "They help us re-see history from new perspectives."

Time travel has found a home in a wide variety of genres and media, including comedies such as "Groundhog Day" and "Bill and Ted's Excellent Adventure" as well as video games like Nintendo's "The Legend of Zelda: Majora's Mask" and the indie game "Braid." 

Yaszek suggested that this malleability and ubiquity speaks to time travel tales' ability to offer an escape from our normal reality. "They let us imagine that we can break free from the grip of linear time," she said. "And somehow get a new perspective on the human experience, either our own or humanity as a whole, and I think that feels so exciting to us." 

That modern people are often drawn to time-machine stories in particular might reflect the fact that we live in a technological world, she added. Yet time travel's appeal certainly has deeper roots, interwoven into the very fabric of our language and appearing in some of our earliest imaginings. 

"I think it's a way to make sense of the otherwise intangible and inexplicable, because it's hard to grasp time," Yaszek said. "But this is one of the final frontiers, the frontier of time, of life and death. And we're all moving forward, we're all traveling through time."

  • If There Were a Time Warp, How Would Physicists Find It?
  • Can Animals Tell Time?
  • Why Does Time Sometimes Fly When You're NOT Having Fun?

Originally published on Live Science .

Adam Mann

Adam Mann is a freelance journalist with over a decade of experience, specializing in astronomy and physics stories. He has a bachelor's degree in astrophysics from UC Berkeley. His work has appeared in the New Yorker, New York Times, National Geographic, Wall Street Journal, Wired, Nature, Science, and many other places. He lives in Oakland, California, where he enjoys riding his bike. 

Why do people feel like they're being watched, even when no one is there?

Why do babies rub their eyes when they're tired?

'We have combined two marvels of modern medicine': Woman gets pig kidney and heart pump in groundbreaking procedures

Most Popular

  • 2 Giant, 82-foot lizard fish discovered on UK beach could be largest marine reptile ever found
  • 3 Global 'time signals' subtly shifted as the total solar eclipse reshaped Earth's upper atmosphere, new data shows
  • 4 Scientists discover once-in-a-billion-year event — 2 lifeforms merging to create a new cell part
  • 5 NASA's downed Ingenuity helicopter has a 'last gift' for humanity — but we'll have to go to Mars to get it
  • 2 'We were in disbelief': Antarctica is behaving in a way we've never seen before. Can it recover?
  • 3 George Washington's stash of centuries-old cherries found hidden under Mount Vernon floor
  • 4 Scientists create 'toxic AI' that is rewarded for thinking up the worst possible questions we could imagine
  • 5 5 catastrophic megathrust earthquakes led to the demise of the pre-Aztec city of Teotihuacan, new study suggests

what is time travel used for

  • Red Light, Green Light
  • Engineering Healthy Silence: Using Noise-Cancelling Headphones to Block Harmful Sound
  • Crushing the Sound Barrier
  • The Powers of Melanin
  • E-Ink Technology: the Secret Behind Kindle

USC Viterbi School of Engineering

USC Viterbi School of Engineering

The Science of Time Travel

About the Author: Mark Villanueva

At the time of publication, Mark Villanueva was a student at the University of Southern California in his third year towards his BS in Computer Science. Back to the Future is one of his favorite movies.

Introduction

Definition of time travel.

what is time travel used for

Traversing in the fourth dimension is vastly different than moving in the previously mentioned three. We simply cannot will ourselves to move forward five minutes or back ten days. In other words, time only moves forward, and we are stuck moving in that direction like corks bobbing helplessly in a river [1]. Thus, the end goal of time travel is to enable us to control where we go in this fourth dimension. Much like moving back and forth, time travel involves moving to either the past or the future. However, our actions in the fourth dimension are cause for concern. What we do now in the present affects our future. In the same manner, our actions in the past should have affected our present lives. Changing the outcomes of past events leads to what physicists and philosophers refer to as the “Grandfather Paradox,” an issue that needs to be addressed in any serious discussion of time travel.

The Grandfather Paradox

“building” a time machine.

what is time travel used for

Unfortunately​, no black hole has yet been positively identified. Black holes, if they exist, could come in an extreme range of sizes. The English physicist Stephen Hawking has speculated that tiny black holes with masses no larger than that of a large mountain are possible. Such black holes, in the size range of elementary particles, would have been formed only under the extreme conditions that cosmology theories indicate existed in the very first moments of the universe. On the other hand, gigantic black holes may lie at the center of galaxies [7]. Einstein envisioned a situation in which the ends of two different black holes could be connected. This is known as a wormhole.

what is time travel used for

The wormhole is one basis for time travel into the past. Physicists liken wormholes to quick paths through the universe, much like the hole a worm burrows through an apple [8]. Instead of apples, these wormholes are theoretical tunnel shortcuts through space (Fig. 3).The trick in this case would be flying a spaceship into the one mouth of the wormhole and coming out the other side in a different time and place [9]. This involves moving one end of the wormhole close to the speed light and keeping the other end stationary near earth in outer space. Like the example with the spaceship traveling near the speed of light in space, the moving end of the wormhole in space will “age” slower than the stationary one; the “younger” end is a quick shortcut that connects to an earlier time on the fixed end [1], so the moving end of the wormhole will bring the traveler back to the past. The time travel process will probably involve a team of advanced scientists that can create wormholes and move them while the time traveler goes through the wormhole in outer space via a spaceship.

The Reality of Time Travel

  • [1] J. R. Gott. “Will We Travel Back (Or Forward) In Time?”  Time , Apr. 10, 2000: pp. 68.
  • [2] M. Kaku.  Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension. New York: Anchor Books, 1994.
  • [3] P. J. Riggs. “The Principal Paradox of Time Travel.”  Ratio X , Apr. 1, 1997: pp. 49-64.
  • [4] S. Mowbray. “Let’s do the time warp again.”  Popular Science]/i], Mar. 2002: pp. 46-51.
  • [5] “How to murder your grandfather and still get born.”  The Economist , Jan. 20, 1996: pp. 81.
  • [6] J. M. Zavisa. “How Special Relativity Works” Internet: http://www.howstuffw​orks.com, May 2, 2003. [Oct. 18, 2002].
  • [7] L. Smarr. “Black Hole”.  The New Grolier Multimedia Encyclopedia . CD-ROM. 1993 Grolier Electronic Publishing, Inc.
  • [8] A. Ramirez. “Clockwork: time travel isn’t what it used to be.”  The New York Times  Jul. 28 2002, natl. ed.: pp. WK3.
  • [9] S. W. Hawking. “Protecting the Past: Is Time Travel Possible?”  Astronomy , Apr. 2002: pp. 46.
  • [10] M. Moyer. “The Physics of Time Travel.”  Popular Science , Mar. 2002: pp. 52-53.
  • [11] C. J. Wheeler. “Of wormholes, time machines and paradoxes.”  Astronomy , Feb 1996: pp. 52-58.
  • ← The Quest for the Perfect Racket: Advances in Tennis Racket Design
  • Improving the Bicycle →

Similar Posts

what is time travel used for

The Beauty of Science: New Technologies in Art Restoration

what is time travel used for

To Boldly Go Where No Man Has Gone Before: Faster-than-Light Travel in the 21st Century

Another atomic age, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

a row of planet earths

Time travel could be possible, but only with parallel timelines

what is time travel used for

Assistant Professor, Physics, Brock University

Disclosure statement

Barak Shoshany does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Brock University provides funding as a member of The Conversation CA-FR.

Brock University provides funding as a member of The Conversation CA.

View all partners

Have you ever made a mistake that you wish you could undo? Correcting past mistakes is one of the reasons we find the concept of time travel so fascinating. As often portrayed in science fiction, with a time machine, nothing is permanent anymore — you can always go back and change it. But is time travel really possible in our universe , or is it just science fiction?

Read more: Curious Kids: is time travel possible for humans?

Our modern understanding of time and causality comes from general relativity . Theoretical physicist Albert Einstein’s theory combines space and time into a single entity — “spacetime” — and provides a remarkably intricate explanation of how they both work, at a level unmatched by any other established theory. This theory has existed for more than 100 years, and has been experimentally verified to extremely high precision, so physicists are fairly certain it provides an accurate description of the causal structure of our universe.

For decades, physicists have been trying to use general relativity to figure out if time travel is possible . It turns out that you can write down equations that describe time travel and are fully compatible and consistent with relativity. But physics is not mathematics, and equations are meaningless if they do not correspond to anything in reality.

Arguments against time travel

There are two main issues which make us think these equations may be unrealistic. The first issue is a practical one: building a time machine seems to require exotic matter , which is matter with negative energy. All the matter we see in our daily lives has positive energy — matter with negative energy is not something you can just find lying around. From quantum mechanics, we know that such matter can theoretically be created, but in too small quantities and for too short times .

However, there is no proof that it is impossible to create exotic matter in sufficient quantities. Furthermore, other equations may be discovered that allow time travel without requiring exotic matter. Therefore, this issue may just be a limitation of our current technology or understanding of quantum mechanics.

an illustration of a person standing in a barren landscape underneath a clock

The other main issue is less practical, but more significant: it is the observation that time travel seems to contradict logic, in the form of time travel paradoxes . There are several types of such paradoxes, but the most problematic are consistency paradoxes .

A popular trope in science fiction, consistency paradoxes happen whenever there is a certain event that leads to changing the past, but the change itself prevents this event from happening in the first place.

For example, consider a scenario where I enter my time machine, use it to go back in time five minutes, and destroy the machine as soon as I get to the past. Now that I destroyed the time machine, it would be impossible for me to use it five minutes later.

But if I cannot use the time machine, then I cannot go back in time and destroy it. Therefore, it is not destroyed, so I can go back in time and destroy it. In other words, the time machine is destroyed if and only if it is not destroyed. Since it cannot be both destroyed and not destroyed simultaneously, this scenario is inconsistent and paradoxical.

Eliminating the paradoxes

There’s a common misconception in science fiction that paradoxes can be “created.” Time travellers are usually warned not to make significant changes to the past and to avoid meeting their past selves for this exact reason. Examples of this may be found in many time travel movies, such as the Back to the Future trilogy.

But in physics, a paradox is not an event that can actually happen — it is a purely theoretical concept that points towards an inconsistency in the theory itself. In other words, consistency paradoxes don’t merely imply time travel is a dangerous endeavour, they imply it simply cannot be possible.

This was one of the motivations for theoretical physicist Stephen Hawking to formulate his chronology protection conjecture , which states that time travel should be impossible. However, this conjecture so far remains unproven. Furthermore, the universe would be a much more interesting place if instead of eliminating time travel due to paradoxes, we could just eliminate the paradoxes themselves.

One attempt at resolving time travel paradoxes is theoretical physicist Igor Dmitriyevich Novikov’s self-consistency conjecture , which essentially states that you can travel to the past, but you cannot change it.

According to Novikov, if I tried to destroy my time machine five minutes in the past, I would find that it is impossible to do so. The laws of physics would somehow conspire to preserve consistency.

Introducing multiple histories

But what’s the point of going back in time if you cannot change the past? My recent work, together with my students Jacob Hauser and Jared Wogan, shows that there are time travel paradoxes that Novikov’s conjecture cannot resolve. This takes us back to square one, since if even just one paradox cannot be eliminated, time travel remains logically impossible.

So, is this the final nail in the coffin of time travel? Not quite. We showed that allowing for multiple histories (or in more familiar terms, parallel timelines) can resolve the paradoxes that Novikov’s conjecture cannot. In fact, it can resolve any paradox you throw at it.

The idea is very simple. When I exit the time machine, I exit into a different timeline. In that timeline, I can do whatever I want, including destroying the time machine, without changing anything in the original timeline I came from. Since I cannot destroy the time machine in the original timeline, which is the one I actually used to travel back in time, there is no paradox.

After working on time travel paradoxes for the last three years , I have become increasingly convinced that time travel could be possible, but only if our universe can allow multiple histories to coexist. So, can it?

Quantum mechanics certainly seems to imply so, at least if you subscribe to Everett’s “many-worlds” interpretation , where one history can “split” into multiple histories, one for each possible measurement outcome – for example, whether Schrödinger’s cat is alive or dead, or whether or not I arrived in the past.

But these are just speculations. My students and I are currently working on finding a concrete theory of time travel with multiple histories that is fully compatible with general relativity. Of course, even if we manage to find such a theory, this would not be sufficient to prove that time travel is possible, but it would at least mean that time travel is not ruled out by consistency paradoxes.

Time travel and parallel timelines almost always go hand-in-hand in science fiction, but now we have proof that they must go hand-in-hand in real science as well. General relativity and quantum mechanics tell us that time travel might be possible, but if it is, then multiple histories must also be possible.

  • Time travel
  • Theoretical physics
  • Time machine
  • Albert Einstein
  • Listen to this article
  • Time travel paradox

what is time travel used for

Program Manager, Teaching & Learning Initiatives

what is time travel used for

Lecturer/Senior Lecturer, Earth System Science (School of Science)

what is time travel used for

Sydney Horizon Educators (Identified)

what is time travel used for

Deputy Social Media Producer

what is time travel used for

Associate Professor, Occupational Therapy

What Is Time? A Simple Explanation

RUNSTUDIO / Getty Images

  • Physics Laws, Concepts, and Principles
  • Quantum Physics
  • Important Physicists
  • Thermodynamics
  • Cosmology & Astrophysics
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Time is familiar to everyone, yet it's hard to define and understand. Science, philosophy, religion, and the arts have different definitions of time, but the system of measuring it is relatively consistent.

Clocks are based on seconds, minutes, and hours. While the basis for these units has changed throughout history, they trace their roots back to ancient Sumeria. The modern international unit of time, the second, is defined by the electronic transition of the cesium atom . But what, exactly, is time?

Scientific Definition

Artur Debat / Getty Images

Physicists define time as the progression of events from the past to the present into the future. Basically, if a system is unchanging, it is timeless. Time can be considered to be the fourth dimension of reality, used to describe events in three-dimensional space. It is not something we can see, touch, or taste, but we can measure its passage.

The Arrow of Time

Bogdan Vija / EyeEm / Getty Images

Physics equations work equally well whether time is moving forward into the future (positive time) or backward into the past (negative time.) However, time in the natural world has one direction, called the arrow of time . The question of why time is irreversible is one of the biggest unresolved questions in science.

One explanation is that the natural world follows the laws of thermodynamics. The second law of thermodynamics states that within an isolated system, the entropy of the system remains constant or increases. If the universe is considered to be an isolated system, its entropy (degree of disorder) can never decrease. In other words, the universe cannot return to exactly the same state in which it was at an earlier point. Time cannot move backward.

Time Dilation

zhuyufang / Getty Images 

In classical mechanics, time is the same everywhere. Synchronized clocks remain in agreement. Yet we know from Einstein's special and general relativity that time is relative. It depends on the frame of reference of an observer. This can result in time dilation , where the time between events becomes longer (dilated) the closer one travels to the speed of light. Moving clocks run more slowly than stationary clocks, with the effect becoming more pronounced as the moving clock approaches light speed . Clocks in jets or in orbit record time more slowly than those on Earth, muon particles decay more slowly when falling, and the Michelson-Morley experiment confirmed length contraction and time dilation.

Time Travel

MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images

Time travel means moving forward or backward to different points in time, much like you might move between different points in space. Jumping forward in time occurs in nature. Astronauts on the International Space Station jump forward in time when they return to Earth because of its slower movement relative to the station.

The idea of traveling back in time , however, poses problems. One issue is causality or cause and effect. Moving back in time could cause a temporal paradox. The "grandfather paradox" is a classic example. According to the paradox, if you travel back in time and kill your grandfather before your mother or father was born, you could prevent your own birth. Many physicists believe time travel to the past is impossible, but there are solutions to a temporal paradox, such as traveling between parallel universes or branch points.

Time Perception

Catherine Falls Commercial / Getty Images

The human brain is equipped to track time. The suprachiasmatic nuclei of the brain is the region responsible for daily or circadian rhythms. But neurotransmitters and drugs affect time perceptions. Chemicals that excite neurons so they fire more quickly than normal speed up time, while decreased neuron firing slows down time perception. Basically, when time seems to speed up, the brain distinguishes more events within an interval. In this respect, time truly does seem to fly when one is having fun.

Time seems to slow down during emergencies or danger. Scientists at Baylor College of Medicine in Houston say the brain doesn't actually speed up, but the amygdala becomes more active. The amygdala is the region of the brain that makes memories. As more memories form, time seems drawn out.

The same phenomenon explains why older people seem to perceive time as moving faster than when they were younger. Psychologists believe the brain forms more memories of new experiences than that of familiar ones. Since fewer new memories are built later in life, time seems to pass more quickly.

The Beginning and End of Time

Billy Currie Photography / Getty Images

As far as the universe is concerned, time had a beginning. The starting point was 13.799 billion years ago when the Big Bang occurred. We can measure cosmic background radiation as microwaves from the Big Bang, but there isn't any radiation with earlier origins. One argument for the origin of time is that if it extended backward infinitely, the night sky would be filled with light from older stars.

Will time end? The answer to this question is unknown. If the universe expands forever, time would continue. If a new Big Bang occurs, our time line would end and a new one would begin. In particle physics experiments, random particles arise from a vacuum, so it doesn't seem likely the universe would become static or timeless. Only time will tell.

  • Time is the progression of events from the past into the future.
  • Time moves only in one direction. It's possible to move forward in time, but not backward.
  • Scientists believe memory formation is the basis for human perception of time.
  • Carter, Rita. The Human Brain Book . Dorling Kindersley Publishing, 2009, London.
  • Richards, E. G. Mapping Time: The Calendar and its History . Oxford University Press, 1998, Oxford.
  • Schwartz, Herman M. Introduction to Special Relativity , McGraw-Hill Book Company, 1968, New York.
  • Understanding Time Dilation Effects in Physics
  • Can We Travel Through Time to the Past?
  • Time Travel: Dream or Possible Reality?
  • Is Time Travel Possible?
  • What Is the Twin Paradox? Real Time Travel
  • What Is the Boltzmann Brains Hypothesis?
  • Closed Timelike Curve
  • Amygdala's Location and Function
  • What Is the Steady-State Theory in Cosmology?
  • Does Time Really Exist?
  • What Makes Us Human?
  • 10 Sounds We Hate Most
  • Einstein's Theory of Relativity
  • Overview of the Five Senses
  • The Olfactory System and Your Sense of Smell
  • Hippocampus and Memory

Pop Mech Pro Logo

Could These Crystals Help Us Travel Through Time?

A mysterious phase of matter has unlocked crucial clues about our universe right now. But what about the past and future?

Yellow, Clip art, Smile, Font,

Breaking the Symmetry of Time

To wrap your head around time crystals, imagine snowflakes or rubies—crystals that tantalizingly corrupt spatial symmetry. Unlike the perfectly symmetrical empty space, there are spots on these spatial crystals that look different than other spots, such as their edges. In much the same way, then, a time crystal breaks the symmetry of time: their atoms love being in different points in space at different points in time, shifting directions as if a pulsating force flipped them.

Even more so, time crystals can move without absorbing energy because they’re created from trapped ions—blends of electric or magnetic fields that can capture charged particles, usually in a system isolated from an external environment, with the capacity to tirelessly gyrate, even at their lowest energy-point (their so-called ground state ).

Vladimir Eltsov, an applied physicist at Aalto University in Finland, who, together with professor Grigori Volovik and doctoral candidate Samuli Autti, took a time quasi-crystal and morphed it into a wholesome and superfluid time crystal in May 2018, is electrified by the virtues of time crystals—even if he doesn’t (yet) believe in their power to turn us all into budding Doc Browns.

Elstov instead prefers to think about how time crystals can advance us technologically. For example, time crystals can help us make highly sensitive magnetic-field detectors or components of quantum computers. And such is Eltsov’s faith in these fascinating structures that he believes they can be our ally in tackling the most theoretical and highbrow stumpers related to the fundamental laws ruling the universe.

Job, Software engineering, Technology, Engineering, Employment, Collaboration, Customer,

In 2012, Massachusetts Institute of Technology theoretical physicist and Nobel Laureate Frank Wilczek first hypothesized that the periodicity ( the quality of occurring at orderly intervals in space) of crystals was an affair of time, too; Wilczek envisaged a system at its lowest energy state, with the ability to freeze in space like a normal crystal. In a hot minute, however, Patrick Bruno from the European Synchrotron Radiation Facility in Grenoble, France—followed moments later by Haruki Watanabe from the University of California, Berkeley, and Masaki Oshikawa from the University of Tokyo—branded Wilczek’s suggestion as impracticable.

“Where on Earth would a system in its ground state find the energy to produce the periodic motion in the first place?” they barked. Only in a system that was forced out of a state of balance—its equilibrium state— by some kind of driving force could periodic time crystal behavior be attained, Watanabe and Oshikawa said. That was it. Scientific circles quickly resurfaced the notion of “Floquet systems,” or quantum systems in which some type of driving force endows the system with periodicity (originally grasped and mathematically calculated in the 19th century by mathematician Gaston Floquet).

In 2015, theoretical physicist Shivaji Sondhi and his Princeton University colleagues published a paper that made the theoretical basis for how time crystals could actually exist.

“We did not have time crystals specifically in our mind at that point, but non-equilibrium states of matter,” says Vedika Khemani, back then a member of the pioneering Princeton team, and today, a condensed matter physicist at Stanford University. The team was investigating what happens when certain isolated quantum systems, made of a potpourri of interacting particles, are frequently prodded by shining a laser on them.

Counterintuitive to conventional physics, which maintained that mayhem would ensue once the systems would heat up, the Princeton team’s calculations showed that under certain conditions, the particles would glue together to form a phase of matter with properties previously unseen.

Blue, Water, Liquid, Aqua, Drop, Water resources, Fluid, Turquoise, Transparent material, Drinking water,

Picture a pendulum. A conventional pendulum that isn’t powered by battery or some other generator will eventually succumb to friction and slow down. Even in an “idealized” pendulum placed in a frictionless environment—in a vacuum—the interactions between the multiple particles that make up the pendulum will create internal strains, and again lead the pendulum to inertia. An even further idealized pendulum that has only one particle will be able to go back and forth forever, but it’s not a unique time crystal. In contrast, the Princeton team’s pendulum was one in which many particles could continue pulsing forever without requiring a constant feed of energy. It was a whole new state of matter.

Soon, two groups of experimenters began attempting to build time crystals in the lab. The first, from Harvard University (where Khemani was also a member), experimented with creating an artificial lattice in a synthetic diamond. The second, from the University of Maryland, used a chain of charged particles called “ytterbium ions.”

Prestigious universities like Princeton, Harvard , and UC Berkeley aren’t the only institutions that have jumped headfirst into investigating time crystals. Even the U.S. military has devoted significant resources to tapping into the mystifying qualities of these conceptually surprising structures.

If Not Crystals, What About ...

So if the research into time crystals shows no signs of exhaustion, perhaps they can allow time travel after all?

“No,” says Khemani, bluntly. “It is a brand-new phase of matter that’s really special, one that’s really exotic. But that’s all.” And her view is unanimously shared by all scientists we asked, including Stephen Holler, a physicist at Fordham University who experiments with crystals in optical systems.

“Time crystals might be instead used as quantum memory storage units,” Holler says. Quantum communication, the transmission of information using quantum bits, can provide us with a very secure way of transmitting information from one place to another, something quite useful for, say, the banking sector or national security. It seems that time crystals’ maximum durability under circumstances elsewhere impossible may as well hold the secret to achieving coherence in quantum computing, echoes Eltsov.

Engineering, Lego, Toy, Electronic engineering, Electronics, Scientific instrument, Machine,

We’ll need to wait at least five years, however, before quantum communication systems emerge into the marketplace and start to make their way into our commercial systems, says Holler. Meanwhile, scientists like Khemani remain cautious about the whole conversation surrounding quantum communication.

Still, is it so wrong—and outside the realm of scientific possibility—for us to still want to bend time through some means other than time crystals?

Here’s the good news: “Time travel cannot be excluded in principle,” says Eltsov.

Now here’s the slightly disappointing news: “But to understand it would require immense energy densities we are unable to produce in the lab either now or in the foreseeable future.”

Think of the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research. The LHC, the world’s largest and most powerful particle accelerator, weighs over 38,000 tons , runs for 27 kilometers in an underground tunnel, has particles guided by titanic superconducting magnets frenzying about it to speeds of 11,000 circuits per seconds, and cost about $4.8 billion. That’s really, really massive—and we’d still need orders of magnitude beyond that to even look into time travel, Holler says. We’re simply not ready.

“It’s completely unfeasible with current technologies,” says Curt von Keyserlingk, a theoretical physicist at the University of Birmingham, who contributed additional theoretical work with Khemani and Sondhi on time crystals in 2016. “But this does not mean it is impossible,” he swiftly adds, prompting us to take a look at the work of physicist Kip S. Thorne.

Black hole in the clouds - abstract digital generated image

Finding and Filling the Cracks

In 2017, Thorne was awarded the Nobel Prize in Physics alongside Rainer Weiss and Barry C. Barish for the first detection of a gravitational wave. Thorne is best known in the unforgiving world of physics as the originator of sci-fi friendly ideas. He’s the one who advised cosmologist and writer Carl Sagan on resorting to a hypothetical traversable wormhole connecting two periods in time to transport Jodie Foster through the universe in Contact, the 1997 film based on Sagan’s 1985 novel. He also helped create a black hole for Interstellar and said that wormholes could be used for space travel and time travel.

Thorne offered explanations for several logical conundrums regarding time travel, including the paradox of going back in time through a wormhole and accidentally killing your grandfather, thereby also killing yourself. (How can you exist if your father doesn’t exist, since the sperm half responsible for his conception was destroyed … by you?) In 1991, Thorne did some mathematical calculations and found that such paradoxes couldn’t arise, but were instead replaced by an infinite number of other potential outcomes. (You could go back in time and mess around with your grandfather all you want, but there’s no way you could have killed him, otherwise you wouldn’t exist to kill him in the first place.)

Then there’s the theory of the many worlds hypothesis, which could resolve some of the implications of going back in time and altering the future. This hypothesis suggests we live in a near-infinity of universes that have the same physical laws and values, but exist in different states and are arranged so that no information can pass between them. Essentially, with every decision we make, the universe splits into multiple realities, and we’re completely unaware of the alternative scenarios our exact replicas experience in the other universes.

.css-2l0eat{font-family:UnitedSans,UnitedSans-roboto,UnitedSans-local,Helvetica,Arial,Sans-serif;font-size:1.625rem;line-height:1.2;margin:0rem;padding:0.9rem 1rem 1rem;}@media(max-width: 48rem){.css-2l0eat{font-size:1.75rem;line-height:1;}}@media(min-width: 48rem){.css-2l0eat{font-size:1.875rem;line-height:1;}}@media(min-width: 64rem){.css-2l0eat{font-size:2.25rem;line-height:1;}}.css-2l0eat b,.css-2l0eat strong{font-family:inherit;font-weight:bold;}.css-2l0eat em,.css-2l0eat i{font-style:italic;font-family:inherit;} “Resolving the hardest problems in physics requires throwing away a lot of our preconceived notions.”

“Time travel would, in the theory of multiverses, have us wind up on one of these other universes, so it would not necessarily be a straight linear path forward to back for us, but a crossing between universes,” says Holler. “I’m not completely sold on it, but there are plenty of smart people working on it and seem to believe it’s very, very feasible,” he continues.

But the incredibly prepossessing theory of multiverses lacks proof in the form of solid calculations, says von Keyserlingk. For him, the problem with the many worlds interpretation and time travel isn’t that they’re necessarily fiction, but that we may currently be missing the mathematical tools and even philosophical ideas to negotiate these things. They’re at the very theoretical end of physics, he says: things that we can really only speculate on, whereas science at its best is just “informed speculation.”

“It can sometimes happen that nature presents us with issues that no one has figured out before,” von Keyserlingk says. “One of the issues is that we have a fairly fixed idea of what space and time is. Resolving the hardest problems in physics requires throwing away a lot of our preconceived notions.”

In a more mathematically, philosophically advanced future, then, could we discover more time-traveling properties of time crystals? Don’t hold your breath, Khemani says. While the crystals do hold a few tiny secrets of the universe, the only thing they have in common with time travel is just one word: time. That’s at least for now—but maybe not forever.

Headshot of Stav Dimitropoulos

Stav Dimitropoulos’s science writing has appeared online or in print for the BBC, Discover, Scientific American, Nature, Science, Runner’s World, The Daily Beast and others. Stav disrupted an athletic and academic career to become a journalist and get to know the world.

preview for Popular Mechanics All Sections

.css-cuqpxl:before{padding-right:0.3125rem;content:'//';display:inline;} Pop Mech Pro .css-xtujxj:before{padding-left:0.3125rem;content:'//';display:inline;}

uae economy aviation airshow

US Army Accepts Delivery of First M10 Assault Gun

moon over the ocean abstract

Underwater UFO is a Threat, Says Ex-Navy Officer

car keys and key ring

DIY Car Key Programming: Why Pay the Dealer?

using induction to heat a frozen nut

Use Induction Heat to Break Free Rusted Bolts

front brake pads being replaced

How to Replace Your Car’s Brakes

a jet on the runway

The Air Force is Resurrecting a B-1 Bomber

harry houdini with locked chains around wrists

Who Killed Harry Houdini?

airplane f 35 lightning stealth jet fighter

A New Hypersonic Missile Will Give the F-35 Fangs

a boeing unmanned mq 25

The Navy’s New Drone Could Turn into a Ship-Killer

documents from stargate project

The CIA’s Secret Plan to Turn Psychics Into Spies

the iceberg that sank the white star line's olympic class rms titanic

Is This the Real Iceberg That Sank the Titanic?

Understanding & Using Time Travel ¶

Snowflake Time Travel enables accessing historical data (i.e. data that has been changed or deleted) at any point within a defined period. It serves as a powerful tool for performing the following tasks:

Restoring data-related objects (tables, schemas, and databases) that might have been accidentally or intentionally deleted.

Duplicating and backing up data from key points in the past.

Analyzing data usage/manipulation over specified periods of time.

Introduction to Time Travel ¶

Time Travel in Continuous Data Protection lifecycle

Using Time Travel, you can perform the following actions within a defined period of time:

Query data in the past that has since been updated or deleted.

Create clones of entire tables, schemas, and databases at or before specific points in the past.

Restore tables, schemas, and databases that have been dropped.

When querying historical data in a table or non-materialized view, the current table or view schema is used. For more information, see Usage notes for AT | BEFORE.

After the defined period of time has elapsed, the data is moved into Snowflake Fail-safe and these actions can no longer be performed.

A long-running Time Travel query will delay moving any data and objects (tables, schemas, and databases) in the account into Fail-safe, until the query completes.

Time Travel SQL Extensions ¶

To support Time Travel, the following SQL extensions have been implemented:

AT | BEFORE clause which can be specified in SELECT statements and CREATE … CLONE commands (immediately after the object name). The clause uses one of the following parameters to pinpoint the exact historical data you wish to access:

OFFSET (time difference in seconds from the present time)

STATEMENT (identifier for statement, e.g. query ID)

UNDROP command for tables, schemas, and databases.

Time Travel SQL extensions

Data Retention Period ¶

A key component of Snowflake Time Travel is the data retention period.

When data in a table is modified, including deletion of data or dropping an object containing data, Snowflake preserves the state of the data before the update. The data retention period specifies the number of days for which this historical data is preserved and, therefore, Time Travel operations (SELECT, CREATE … CLONE, UNDROP) can be performed on the data.

The standard retention period is 1 day (24 hours) and is automatically enabled for all Snowflake accounts:

For Snowflake Standard Edition, the retention period can be set to 0 (or unset back to the default of 1 day) at the account and object level (i.e. databases, schemas, and tables).

For Snowflake Enterprise Edition (and higher):

For transient databases, schemas, and tables, the retention period can be set to 0 (or unset back to the default of 1 day). The same is also true for temporary tables.

For permanent databases, schemas, and tables, the retention period can be set to any value from 0 up to 90 days.

A retention period of 0 days for an object effectively disables Time Travel for the object.

When the retention period ends for an object, the historical data is moved into Snowflake Fail-safe :

Historical data is no longer available for querying.

Past objects can no longer be cloned.

Past objects that were dropped can no longer be restored.

To specify the data retention period for Time Travel:

The DATA_RETENTION_TIME_IN_DAYS object parameter can be used by users with the ACCOUNTADMIN role to set the default retention period for your account.

The same parameter can be used to explicitly override the default when creating a database, schema, and individual table.

The data retention period for a database, schema, or table can be changed at any time.

The MIN_DATA_RETENTION_TIME_IN_DAYS account parameter can be set by users with the ACCOUNTADMIN role to set a minimum retention period for the account. This parameter does not alter or replace the DATA_RETENTION_TIME_IN_DAYS parameter value. However it may change the effective data retention time. When this parameter is set at the account level, the effective minimum data retention period for an object is determined by MAX(DATA_RETENTION_TIME_IN_DAYS, MIN_DATA_RETENTION_TIME_IN_DAYS).

Enabling and Disabling Time Travel ¶

No tasks are required to enable Time Travel. It is automatically enabled with the standard, 1-day retention period.

However, you may wish to upgrade to Snowflake Enterprise Edition to enable configuring longer data retention periods of up to 90 days for databases, schemas, and tables. Note that extended data retention requires additional storage which will be reflected in your monthly storage charges. For more information about storage charges, see Storage Costs for Time Travel and Fail-safe .

Time Travel cannot be disabled for an account. A user with the ACCOUNTADMIN role can set DATA_RETENTION_TIME_IN_DAYS to 0 at the account level, which means that all databases (and subsequently all schemas and tables) created in the account have no retention period by default; however, this default can be overridden at any time for any database, schema, or table.

A user with the ACCOUNTADMIN role can also set the MIN_DATA_RETENTION_TIME_IN_DAYS at the account level. This parameter setting enforces a minimum data retention period for databases, schemas, and tables. Setting MIN_DATA_RETENTION_TIME_IN_DAYS does not alter or replace the DATA_RETENTION_TIME_IN_DAYS parameter value. It may, however, change the effective data retention period for objects. When MIN_DATA_RETENTION_TIME_IN_DAYS is set at the account level, the data retention period for an object is determined by MAX(DATA_RETENTION_TIME_IN_DAYS, MIN_DATA_RETENTION_TIME_IN_DAYS).

Time Travel can be disabled for individual databases, schemas, and tables by specifying DATA_RETENTION_TIME_IN_DAYS with a value of 0 for the object. However, if DATA_RETENTION_TIME_IN_DAYS is set to a value of 0, and MIN_DATA_RETENTION_TIME_IN_DAYS is set at the account level and is greater than 0, the higher value setting takes precedence.

Before setting DATA_RETENTION_TIME_IN_DAYS to 0 for any object, consider whether you wish to disable Time Travel for the object, particularly as it pertains to recovering the object if it is dropped. When an object with no retention period is dropped, you will not be able to restore the object.

As a general rule, we recommend maintaining a value of (at least) 1 day for any given object.

If the Time Travel retention period is set to 0, any modified or deleted data is moved into Fail-safe (for permanent tables) or deleted (for transient tables) by a background process. This may take a short time to complete. During that time, the TIME_TRAVEL_BYTES in table storage metrics might contain a non-zero value even when the Time Travel retention period is 0 days.

Specifying the Data Retention Period for an Object ¶

By default, the maximum retention period is 1 day (i.e. one 24 hour period). With Snowflake Enterprise Edition (and higher), the default for your account can be set to any value up to 90 days:

When creating a table, schema, or database, the account default can be overridden using the DATA_RETENTION_TIME_IN_DAYS parameter in the command.

If a retention period is specified for a database or schema, the period is inherited by default for all objects created in the database/schema.

A minimum retention period can be set on the account using the MIN_DATA_RETENTION_TIME_IN_DAYS parameter. If this parameter is set at the account level, the data retention period for an object is determined by MAX(DATA_RETENTION_TIME_IN_DAYS, MIN_DATA_RETENTION_TIME_IN_DAYS).

Changing the Data Retention Period for an Object ¶

If you change the data retention period for a table, the new retention period impacts all data that is active, as well as any data currently in Time Travel. The impact depends on whether you increase or decrease the period:

Causes the data currently in Time Travel to be retained for the longer time period.

For example, if you have a table with a 10-day retention period and increase the period to 20 days, data that would have been removed after 10 days is now retained for an additional 10 days before moving into Fail-safe.

Note that this doesn’t apply to any data that is older than 10 days and has already moved into Fail-safe.

Reduces the amount of time data is retained in Time Travel:

For active data modified after the retention period is reduced, the new shorter period applies.

For data that is currently in Time Travel:

If the data is still within the new shorter period, it remains in Time Travel. If the data is outside the new period, it moves into Fail-safe.

For example, if you have a table with a 10-day retention period and you decrease the period to 1-day, data from days 2 to 10 will be moved into Fail-safe, leaving only the data from day 1 accessible through Time Travel.

However, the process of moving the data from Time Travel into Fail-safe is performed by a background process, so the change is not immediately visible. Snowflake guarantees that the data will be moved, but does not specify when the process will complete; until the background process completes, the data is still accessible through Time Travel.

If you change the data retention period for a database or schema, the change only affects active objects contained within the database or schema. Any objects that have been dropped (for example, tables) remain unaffected.

For example, if you have a schema s1 with a 90-day retention period and table t1 is in schema s1 , table t1 inherits the 90-day retention period. If you drop table s1.t1 , t1 is retained in Time Travel for 90 days. Later, if you change the schema’s data retention period to 1 day, the retention period for the dropped table t1 is unchanged. Table t1 will still be retained in Time Travel for 90 days.

To alter the retention period of a dropped object, you must undrop the object, then alter its retention period.

To change the retention period for an object, use the appropriate ALTER <object> command. For example, to change the retention period for a table:

Changing the retention period for your account or individual objects changes the value for all lower-level objects that do not have a retention period explicitly set. For example:

If you change the retention period at the account level, all databases, schemas, and tables that do not have an explicit retention period automatically inherit the new retention period.

If you change the retention period at the schema level, all tables in the schema that do not have an explicit retention period inherit the new retention period.

Keep this in mind when changing the retention period for your account or any objects in your account because the change might have Time Travel consequences that you did not anticipate or intend. In particular, we do not recommend changing the retention period to 0 at the account level.

Dropped Containers and Object Retention Inheritance ¶

Currently, when a database is dropped, the data retention period for child schemas or tables, if explicitly set to be different from the retention of the database, is not honored. The child schemas or tables are retained for the same period of time as the database.

Similarly, when a schema is dropped, the data retention period for child tables, if explicitly set to be different from the retention of the schema, is not honored. The child tables are retained for the same period of time as the schema.

To honor the data retention period for these child objects (schemas or tables), drop them explicitly before you drop the database or schema.

Querying Historical Data ¶

When any DML operations are performed on a table, Snowflake retains previous versions of the table data for a defined period of time. This enables querying earlier versions of the data using the AT | BEFORE clause.

This clause supports querying data either exactly at or immediately preceding a specified point in the table’s history within the retention period. The specified point can be time-based (e.g. a timestamp or time offset from the present) or it can be the ID for a completed statement (e.g. SELECT or INSERT).

For example:

The following query selects historical data from a table as of the date and time represented by the specified timestamp :

SELECT * FROM my_table AT ( TIMESTAMP => 'Fri, 01 May 2015 16:20:00 -0700' ::timestamp_tz ); Copy

The following query selects historical data from a table as of 5 minutes ago:

SELECT * FROM my_table AT ( OFFSET => - 60 * 5 ); Copy

The following query selects historical data from a table up to, but not including any changes made by the specified statement:

SELECT * FROM my_table BEFORE ( STATEMENT => '8e5d0ca9-005e-44e6-b858-a8f5b37c5726' ); Copy

If the TIMESTAMP, OFFSET, or STATEMENT specified in the AT | BEFORE clause falls outside the data retention period for the table, the query fails and returns an error.

Cloning Historical Objects ¶

In addition to queries, the AT | BEFORE clause can be used with the CLONE keyword in the CREATE command for a table, schema, or database to create a logical duplicate of the object at a specified point in the object’s history.

The following CREATE TABLE statement creates a clone of a table as of the date and time represented by the specified timestamp:

CREATE TABLE restored_table CLONE my_table AT ( TIMESTAMP => 'Sat, 09 May 2015 01:01:00 +0300' ::timestamp_tz ); Copy

The following CREATE SCHEMA statement creates a clone of a schema and all its objects as they existed 1 hour before the current time:

CREATE SCHEMA restored_schema CLONE my_schema AT ( OFFSET => - 3600 ); Copy

The following CREATE DATABASE statement creates a clone of a database and all its objects as they existed prior to the completion of the specified statement:

CREATE DATABASE restored_db CLONE my_db BEFORE ( STATEMENT => '8e5d0ca9-005e-44e6-b858-a8f5b37c5726' ); Copy

The cloning operation for a database or schema fails:

If the specified Time Travel time is beyond the retention time of any current child (e.g., a table) of the entity. As a workaround for child objects that have been purged from Time Travel, use the IGNORE TABLES WITH INSUFFICIENT DATA RETENTION parameter of the CREATE <object> … CLONE command. For more information, see Child objects and data retention time . If the specified Time Travel time is at or before the point in time when the object was created.

The following CREATE DATABASE statement creates a clone of a database and all its objects as they existed four days ago, skipping any tables that have a data retention period of less than four days:

CREATE DATABASE restored_db CLONE my_db AT ( TIMESTAMP => DATEADD ( days , - 4 , current_timestamp ) ::timestamp_tz ) IGNORE TABLES WITH INSUFFICIENT DATA RETENTION ; Copy

Dropping and Restoring Objects ¶

Dropping objects ¶.

When a table, schema, or database is dropped, it is not immediately overwritten or removed from the system. Instead, it is retained for the data retention period for the object, during which time the object can be restored. Once dropped objects are moved to Fail-safe , you cannot restore them.

To drop a table, schema, or database, use the following commands:

DROP SCHEMA

DROP DATABASE

After dropping an object, creating an object with the same name does not restore the object. Instead, it creates a new version of the object. The original, dropped version is still available and can be restored.

Restoring a dropped object restores the object in place (i.e. it does not create a new object).

Listing Dropped Objects ¶

Dropped tables, schemas, and databases can be listed using the following commands with the HISTORY keyword specified:

SHOW TABLES

SHOW SCHEMAS

SHOW DATABASES

SHOW TABLES HISTORY LIKE 'load%' IN mytestdb . myschema ; SHOW SCHEMAS HISTORY IN mytestdb ; SHOW DATABASES HISTORY ; Copy

The output includes all dropped objects and an additional DROPPED_ON column, which displays the date and time when the object was dropped. If an object has been dropped more than once, each version of the object is included as a separate row in the output.

After the retention period for an object has passed and the object has been purged, it is no longer displayed in the SHOW <object_type> HISTORY output.

Restoring Objects ¶

A dropped object that has not been purged from the system (i.e. the object is displayed in the SHOW <object_type> HISTORY output) can be restored using the following commands:

UNDROP TABLE

UNDROP SCHEMA

UNDROP DATABASE

Calling UNDROP restores the object to its most recent state before the DROP command was issued.

UNDROP TABLE mytable ; UNDROP SCHEMA myschema ; UNDROP DATABASE mydatabase ; Copy

If an object with the same name already exists, UNDROP fails. You must rename the existing object, which then enables you to restore the previous version of the object.

Access Control Requirements and Name Resolution ¶

Similar to dropping an object, a user must have OWNERSHIP privileges for an object to restore it. In addition, the user must have CREATE privileges on the object type for the database or schema where the dropped object will be restored.

Restoring tables and schemas is only supported in the current schema or current database, even if a fully-qualified object name is specified.

Example: Dropping and Restoring a Table Multiple Times ¶

In the following example, the mytestdb.public schema contains two tables: loaddata1 and proddata1 . The loaddata1 table is dropped and recreated twice, creating three versions of the table:

Current version Second (i.e. most recent) dropped version First dropped version

The example then illustrates how to restore the two dropped versions of the table:

First, the current table with the same name is renamed to loaddata3 . This enables restoring the most recent version of the dropped table, based on the timestamp. Then, the most recent dropped version of the table is restored. The restored table is renamed to loaddata2 to enable restoring the first version of the dropped table. Lastly, the first version of the dropped table is restored. SHOW TABLES HISTORY ; + ---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------+ | created_on | name | database_name | schema_name | kind | comment | cluster_by | rows | bytes | owner | retention_time | dropped_on | |---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------| | Tue, 17 Mar 2016 17:41:55 -0700 | LOADDATA1 | MYTESTDB | PUBLIC | TABLE | | | 48 | 16248 | PUBLIC | 1 | [NULL] | | Tue, 17 Mar 2016 17:51:30 -0700 | PRODDATA1 | MYTESTDB | PUBLIC | TABLE | | | 12 | 4096 | PUBLIC | 1 | [NULL] | + ---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------+ DROP TABLE loaddata1 ; SHOW TABLES HISTORY ; + ---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------+ | created_on | name | database_name | schema_name | kind | comment | cluster_by | rows | bytes | owner | retention_time | dropped_on | |---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------| | Tue, 17 Mar 2016 17:51:30 -0700 | PRODDATA1 | MYTESTDB | PUBLIC | TABLE | | | 12 | 4096 | PUBLIC | 1 | [NULL] | | Tue, 17 Mar 2016 17:41:55 -0700 | LOADDATA1 | MYTESTDB | PUBLIC | TABLE | | | 48 | 16248 | PUBLIC | 1 | Fri, 13 May 2016 19:04:46 -0700 | + ---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------+ CREATE TABLE loaddata1 ( c1 number ); INSERT INTO loaddata1 VALUES ( 1111 ), ( 2222 ), ( 3333 ), ( 4444 ); DROP TABLE loaddata1 ; CREATE TABLE loaddata1 ( c1 varchar ); SHOW TABLES HISTORY ; + ---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------+ | created_on | name | database_name | schema_name | kind | comment | cluster_by | rows | bytes | owner | retention_time | dropped_on | |---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------| | Fri, 13 May 2016 19:06:01 -0700 | LOADDATA1 | MYTESTDB | PUBLIC | TABLE | | | 0 | 0 | PUBLIC | 1 | [NULL] | | Tue, 17 Mar 2016 17:51:30 -0700 | PRODDATA1 | MYTESTDB | PUBLIC | TABLE | | | 12 | 4096 | PUBLIC | 1 | [NULL] | | Fri, 13 May 2016 19:05:32 -0700 | LOADDATA1 | MYTESTDB | PUBLIC | TABLE | | | 4 | 4096 | PUBLIC | 1 | Fri, 13 May 2016 19:05:51 -0700 | | Tue, 17 Mar 2016 17:41:55 -0700 | LOADDATA1 | MYTESTDB | PUBLIC | TABLE | | | 48 | 16248 | PUBLIC | 1 | Fri, 13 May 2016 19:04:46 -0700 | + ---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------+ ALTER TABLE loaddata1 RENAME TO loaddata3 ; UNDROP TABLE loaddata1 ; SHOW TABLES HISTORY ; + ---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------+ | created_on | name | database_name | schema_name | kind | comment | cluster_by | rows | bytes | owner | retention_time | dropped_on | |---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------| | Fri, 13 May 2016 19:05:32 -0700 | LOADDATA1 | MYTESTDB | PUBLIC | TABLE | | | 4 | 4096 | PUBLIC | 1 | [NULL] | | Fri, 13 May 2016 19:06:01 -0700 | LOADDATA3 | MYTESTDB | PUBLIC | TABLE | | | 0 | 0 | PUBLIC | 1 | [NULL] | | Tue, 17 Mar 2016 17:51:30 -0700 | PRODDATA1 | MYTESTDB | PUBLIC | TABLE | | | 12 | 4096 | PUBLIC | 1 | [NULL] | | Tue, 17 Mar 2016 17:41:55 -0700 | LOADDATA1 | MYTESTDB | PUBLIC | TABLE | | | 48 | 16248 | PUBLIC | 1 | Fri, 13 May 2016 19:04:46 -0700 | + ---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------+ ALTER TABLE loaddata1 RENAME TO loaddata2 ; UNDROP TABLE loaddata1 ; + ---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------+ | created_on | name | database_name | schema_name | kind | comment | cluster_by | rows | bytes | owner | retention_time | dropped_on | |---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------| | Tue, 17 Mar 2016 17:41:55 -0700 | LOADDATA1 | MYTESTDB | PUBLIC | TABLE | | | 48 | 16248 | PUBLIC | 1 | [NULL] | | Fri, 13 May 2016 19:05:32 -0700 | LOADDATA2 | MYTESTDB | PUBLIC | TABLE | | | 4 | 4096 | PUBLIC | 1 | [NULL] | | Fri, 13 May 2016 19:06:01 -0700 | LOADDATA3 | MYTESTDB | PUBLIC | TABLE | | | 0 | 0 | PUBLIC | 1 | [NULL] | | Tue, 17 Mar 2016 17:51:30 -0700 | PRODDATA1 | MYTESTDB | PUBLIC | TABLE | | | 12 | 4096 | PUBLIC | 1 | [NULL] | + ---------------------------------+-----------+---------------+-------------+-------+---------+------------+------+-------+--------+----------------+---------------------------------+ Copy

An official website of the United States government Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Biden-Harris Administration Announces Final Rule Requiring Automatic Refunds of Airline Tickets and Ancillary Service Fees

Rule makes it easy to get money back for cancelled or significantly changed flights, significantly delayed checked bags, and additional services not provided  

WASHINGTON – The Biden-Harris Administration today announced that the U.S. Department of Transportation (DOT) has issued a final rule that requires airlines to promptly provide passengers with automatic cash refunds when owed. The new rule makes it easy for passengers to obtain refunds when airlines cancel or significantly change their flights, significantly delay their checked bags, or fail to provide the extra services they purchased.

“Passengers deserve to get their money back when an airline owes them - without headaches or haggling,” said U.S. Transportation Secretary Pete Buttigieg . “Our new rule sets a new standard to require airlines to promptly provide cash refunds to their passengers.”  

The final rule creates certainty for consumers by defining the specific circumstances in which airlines must provide refunds. Prior to this rule, airlines were permitted to set their own standards for what kind of flight changes warranted a refund. As a result, refund policies differed from airline to airline, which made it difficult for passengers to know or assert their refund rights. DOT also received complaints of some airlines revising and applying less consumer-friendly refund policies during spikes in flight cancellations and changes. 

Under the rule, passengers are entitled to a refund for:

  • Canceled or significantly changed flights: Passengers will be entitled to a refund if their flight is canceled or significantly changed, and they do not accept alternative transportation or travel credits offered. For the first time, the rule defines “significant change.” Significant changes to a flight include departure or arrival times that are more than 3 hours domestically and 6 hours internationally; departures or arrivals from a different airport; increases in the number of connections; instances where passengers are downgraded to a lower class of service; or connections at different airports or flights on different planes that are less accessible or accommodating to a person with a disability.  
  • Significantly delayed baggage return: Passengers who file a mishandled baggage report will be entitled to a refund of their checked bag fee if it is not delivered within 12 hours of their domestic flight arriving at the gate, or 15-30 hours of their international flight arriving at the gate, depending on the length of the flight.  
  • Extra services not provided: Passengers will be entitled to a refund for the fee they paid for an extra service — such as Wi-Fi, seat selection, or inflight entertainment — if an airline fails to provide this service.

DOT’s final rule also makes it simple and straightforward for passengers to receive the money they are owed. Without this rule, consumers have to navigate a patchwork of cumbersome processes to request and receive a refund — searching through airline websites to figure out how make the request, filling out extra “digital paperwork,” or at times waiting for hours on the phone. In addition, passengers would receive a travel credit or voucher by default from some airlines instead of getting their money back, so they could not use their refund to rebook on another airline when their flight was changed or cancelled without navigating a cumbersome request process.  

The final rule improves the passenger experience by requiring refunds to be:

  • Automatic: Airlines must automatically issue refunds without passengers having to explicitly request them or jump through hoops.   
  • Prompt: Airlines and ticket agents must issue refunds within seven business days of refunds becoming due for credit card purchases and 20 calendar days for other payment methods.  
  • Cash or original form of payment: Airlines and ticket agents must provide refunds in cash or whatever original payment method the individual used to make the purchase, such as credit card or airline miles. Airlines may not substitute vouchers, travel credits, or other forms of compensation unless the passenger affirmatively chooses to accept alternative compensation.    
  • Full amount: Airlines and ticket agents must provide full refunds of the ticket purchase price, minus the value of any portion of transportation already used. The refunds must include all government-imposed taxes and fees and airline-imposed fees, regardless of whether the taxes or fees are refundable to airlines.

The final rule also requires airlines to provide prompt notifications to consumers affected by a cancelled or significantly changed flight of their right to a refund of the ticket and extra service fees, as well as any related policies.

In addition, in instances where consumers are restricted by a government or advised by a medical professional not to travel to, from, or within the United States due to a serious communicable disease, the final rule requires that airlines must provide travel credits or vouchers. Consumers may be required to provide documentary evidence to support their request. Travel vouchers or credits provided by airlines must be transferrable and valid for at least five years from the date of issuance.

The Department received a significant number of complaints against airlines and ticket agents for refusing to provide a refund or for delaying processing of refunds during and after the COVID-19 pandemic. At the height of the pandemic in 2020, refund complaints peaked at 87 percent of all air travel service complaints received by DOT. Refund problems continue to make up a substantial share of the complaints that DOT receives.

DOT’s Historic Record of Consumer Protection Under the Biden-Harris Administration

Under the Biden-Harris Administration and Secretary Buttigieg, DOT has advanced the largest expansion of airline passenger rights, issued the biggest fines against airlines for failing consumers, and returned more money to passengers in refunds and reimbursements than ever before in the Department’s history.

  • Thanks to pressure from Secretary Buttigieg and DOT’s flightrights.gov dashboard, all 10 major U.S. airlines guarantee free rebooking and meals, and nine guarantee hotel accommodations when an airline issue causes a significant delay or cancellation. These are new commitments the airlines added to their customer service plans that DOT can legally ensure they adhere to and are displayed on flightrights.gov .  
  • Since President Biden took office, DOT has helped return more than $3 billion in refunds and reimbursements owed to airline passengers – including over $600 million to passengers affected by the Southwest Airlines holiday meltdown in 2022.   
  • Under Secretary Buttigieg, DOT has issued over $164 million in penalties against airlines for consumer protection violations. Between 1996 and 2020, DOT collectively issued less than $71 million in penalties against airlines for consumer protection violations.  
  • DOT recently launched a new partnership with a bipartisan group of state attorneys general to fast-track the review of consumer complaints, hold airlines accountable, and protect the rights of the traveling public.  
  • In 2023, the flight cancellation rate in the U.S. was a record low at under 1.2% — the lowest rate of flight cancellations in over 10 years despite a record amount of air travel.  
  • DOT is undertaking its first ever industry-wide review of airline privacy practices and its first review of airline loyalty programs.

In addition to finalizing the rules to require automatic refunds and protect against surprise fees, DOT is also pursuing rulemakings that would:

  • Propose to ban family seating junk fees and guarantee that parents can sit with their children for no extra charge when they fly. Before President Biden and Secretary Buttigieg pressed airlines last year, no airline committed to guaranteeing fee-free family seating. Now, four airlines guarantee fee-free family seating, and the Department is working on its family seating junk fee ban proposal.  
  • Propose to make passenger compensation and amenities mandatory so that travelers are taken care of when airlines cause flight delays or cancellations.   
  • Expand the rights for passengers who use wheelchairs and ensure that they can travel safely and with dignity . The comment period on this proposed rule closes on May 13, 2024.

The final rule on refunds can be found at https://www.transportation.gov/airconsumer/latest-news and at regulations.gov , docket number DOT-OST-2022-0089. There are different implementation periods in this final rule ranging from six months for airlines to provide automatic refunds when owed to 12 months for airlines to provide transferable travel vouchers or credits when consumers are unable to travel for reasons related to a serious communicable disease. 

Information about airline passenger rights, as well as DOT’s rules, guidance and orders, can be found at   https://www.transportation.gov/airconsumer .

to submit an obituary

Please send an email with the full text of your obituary to [email protected] . Text in the body of the email is best but we can take attached word and .txt documents as well--PDFs will not work. If you would like to include a photo, please attach it as a separate file from the text. Please specify the dates for the Obituary to run. We will send you a proof with cost for your final approval.

All obituaries need to be approved and paid for in advance. To pay by credit card call Melissa 530-896-7718 or Rene at 530-896-7726.

Submission Deadlines:

By noon to be printed in next day's paper.

Friday noon to be printed in weekend papers.

Times-Standard

Movie Review | ‘The Greatest Hits’

Share this:.

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to print (Opens in new window)
  • Sponsored Content

Things To Do

Subscriber only, time travel-by-song hook is catchy in fantasy-romance.

Lucy Boynton's Harriet and Justin H. Min's David share a moment in a scene from "The Greatest Hits." (Courtesy of Searchlight Pictures)

Ned Benson appreciates how music and memory can become intertwined — how music can bring you back to a certain place, time or — perhaps most importantly — person.

The idea for “The Greatest Hits” — a fairly melodic fantasy-romance film written and directed by Benson that had its premiere last month at the South by Southwest in Austin, Texas, saw a limited theatrical release last week and debuts this week on Hulu — dates to 2008, when Benson read neurologist Oliver Sacks’ “Musicophilia: Tales of Music and the Brain.” According to the production notes for the Searchlight Pictures release, the first draft of the screenplay followed the next year, with Benson picking back up with the project during the pandemic.

In Benson’s occasionally magical tale, Harriet (Lucy Boynton) is still grieving the loss of her boyfriend two years after his death. However, Harriet regularly encounters Max (David Corenswet), briefly traveling back in time when she hears a song from their shared existence and being able to interact with him in a now-altered moment from the past.

Lucy Boynton's Harriet uses music to travel back in time to interact with her late boyfriend, David Corenswet's Max, in "The Greatest Hits." (Merie Weismiller Wallace photo/Courtesy of Searchlight Pictures)

We learn that Harriet has been attempting to use these time-bending moments to change what is to come.

“Hon,” she says after arriving back in the passenger seat of a car he’s driving, “I have seen what happens next, and I need you to listen to me: Please, please take the next right.”

“That’s right,” he says dismissively but at the same time lovingly, “you can see the future. I forgot who I was dealing with. You should have said something.”

“I have,” she says. “So many times.”

Lucy Boynton stars as a grieving woman in "The Greatest Hits." (Merie Weismiller Wallace photo/Courtesy of Searchlight Pictures)

He keeps going straight and another vehicle slams into his side of the car.

Lucy Boynton’s Harriet uses music to travel back in time to interact with her late boyfriend, David Corenswet’s Max, in “The Greatest Hits.” (Courtesy of Searchlight Pictures)

This seemingly supernatural predicament — it is, of course, possible she’s suffering from a mental condition — not only is psychologically draining and keeping her from moving on, but it’s also downright physically dangerous. Lucy seizes and passes out whenever and wherever she hears one of these songs, so the one-time future music producer has taken a job at a library and wears big headphones everywhere she goes to block out outside noise in the name of safety.

Nonetheless, she also spends time at home, going through records — via the music-listening setup she’s inherited from Max, including a record player, hi-fi speakers and a coveted but ill-fated used chair — to find the song that may allow to give her the future she desperately desires.

Her life is further complicated when she meets David (Justin H. Min), who takes an immediate interest in Harriet upon meeting her in a grief support group, the former dealing with the loss of his parents. He, too, is a music lover, and soon the two are having a flirtatious argument about who gets to buy a rare Roxy Music vinyl at the endangered record store where her best friend, Morris (Austin Crute), is DJing on this night,

Morris loves Harriet but also is quite tired of her wallowing in the past, both figuratively and literally, and encourages her to try to have something with David.

David, meanwhile, is understandably perplexed when Harriet lets him into her world, gradually revealing what is going on with her.

Benson, who shares a story-by credit on 2021’s “Black Widow” and is the writer-director of 2014’s “The Disappearance of Eleanor Rigby,” walks a fine line with “The Greatest Hits,” encouraging the viewer to both want Harriet to be with the kind David while also not necessarily giving up on saving Max, who is never shown to be anything but a decent fellow himself.

And, at least for a while, it’s tough to envision how “The Greatest Hits” will end, even after Harriet concludes exactly how her particular brand of time travel works.

The film is anchored by the performance of Boyton (“Bohemian Rhapsody,” “Chevalier”), who makes us root for Harriet both when she’s sad and when she’s experiencing a mix of excitement and guilt as things develop with David. She has chemistry both with Min (“The Umbrella Academy”) and Corenswet, with whom she shared the screen in the TV series “The Politician.”

(If Corenswet’s name is ringing a bell, it’s likely because he’s been cast in writer-director James Gunn’s highly anticipated “Superman,” recently renamed from “Superman: Legacy” and planned for a 2025 release. We see nothing here to suggest he will prove to be at least a solid choice.)

The lone area where “The Greatest Hits” lets us down is its all-important music. Mileage will vary with this, of course, but, to our ears, so many of the songs chosen by Benson, music supervisor Mary Ramos and DJ Harvey, a music consultant, are relatively bland and uninteresting. Obviously, different folks adore different music, but it’s hard to imagine some of the songs featured would delight audiophiles Harriet and Morris, and you can’t help but wonder if the project’s budget for music were only so robust.

(For the record, we have no issue with the use of 2009 pop hit “I’m Like a Bird” by Nelly Furtado, who appears briefly in “The Greatest Hits.”)

Still, as a love letter to the power of music — as well as to Los Angeles, where the movie was shot entirely on location — “The Greatest Hits” is well worth a spin.

“The Greatest Hits” is rated PG-13 for drug use, strong language and suggestive material. Runtime: 1 hour, 34 minutes.

More in Things To Do

Services and Sermons is a free service for churches and other faith-based groups. Entries may be edited to fit space. The deadline for submissions is noon Wednesday for Saturday publication. Submit notices to style@times-standard.com.

Services and Sermons

Choosing a bottle of wine can be a stressful task. Especially when that wine is meant for someone else.

Unlocking the perfect wine: Experts share tips to bringing the right wine for any occasion

Food never happened in a vacuum for Karla Tatiana Vasquez. Stories always followed.

A Salvadoran cookbook from a major publisher is finally here. Why did it take so long?

A pair of teenage ghosts solve mysteries for their supernatural clientele in "Dead Boy Detectives."

‘Dead Boy Detectives’ review: Hardy Boys for the supernatural realm

Stacker

What happens if you don't use airplane mode on your flight? Here's the answer to that, and more common travel questions.

Posted: April 25, 2024 | Last updated: April 28, 2024

<p>In many ways our phones have become the keys to our lives. We use them to bank, take photos of our families, and share those pictures on social media. We use them to buy everything from clothes to groceries to gasoline. And there's a good chance your phone holds an entire archive of every for-friends'-eyes-only texts you've ever sent. </p>  <p>Even if we're planning to unplug on a trip, it feels almost unthinkable to leave our phone at home. We use them to check in for flights, act as our boarding passes, book ride-shares or plan bus routes, find restaurants, check museum hours, or just kill time. But given all the extra phone usage that comes with travel, we're presented with myriad new concerns. What's safe and what isn't? Can you trust this public Wi-Fi network? Our pocket-sized devices may feel even more necessary outside of our comfort zones (not to mention time zones), so protecting them and all the info they hold seems even more critical when we're away from home.</p>  <p>In partnership with <a href="https://www.visible.com/" rel="noopener noreferrer">Visible</a>, Stacker looked at recommendations from manufacturers and consumer experts for smart and safe ways to fly with your phone. Can you use an unprotected Wi-Fi network at a cafe? Should you trust the chargers on the plane? Find out the answers to those questions and more.</p>

What is airplane mode, anyway? 5 travel questions about flying with phones answered

In many ways our phones have become the keys to our lives. We use them to bank, take photos of our families, and share those pictures on social media. We use them to buy everything from clothes to groceries to gasoline. And there's a good chance your phone holds an entire archive of every for-friends'-eyes-only texts you've ever sent. 

Even if we're planning to unplug on a trip, it feels almost unthinkable to leave our phone at home. We use them to check in for flights, act as our boarding passes, book ride-shares or plan bus routes, find restaurants, check museum hours, or just kill time. But given all the extra phone usage that comes with travel, we're presented with myriad new concerns. What's safe and what isn't? Can you trust this public Wi-Fi network? Our pocket-sized devices may feel even more necessary outside of our comfort zones (not to mention time zones), so protecting them and all the info they hold seems even more critical when we're away from home.

In partnership with  Visible , Stacker looked at recommendations from manufacturers and consumer experts for smart and safe ways to fly with your phone. Can you use an unprotected Wi-Fi network at a cafe? Should you trust the chargers on the plane? Find out the answers to those questions and more.

<p>The fear of public Wi-Fi hotspots is <a href="https://www.washingtonpost.com/technology/2022/09/26/public-wifi-privacy/">something of a relic</a>, according to experts who spoke with the Washington Post. These days, most reputable websites and apps use HTTPS. This protocol encrypts data, making it very hard for potential digital eavesdroppers to spy on you. Before leaving home, make the most of HTTPS by <a href="https://www.eff.org/https-everywhere/set-https-default-your-browser">setting your web browser</a> to use only that connection type.</p>  <p>Check to ensure your web activity uses HTTPS by looking for these letters at the start of any URL or website address. Pages that start with HTTP are not encrypted. It's more difficult to tell whether mobile apps encrypt their traffic, so surfing for entertainment is better than accessing sensitive information while out and about.</p>  <p>If you're checking particularly sensitive information—say, your bank account—you can upgrade your security with a trustworthy virtual private network. VPNs further encrypt your digital traffic, making it virtually impossible for any eavesdropper to access it. Still, before connecting to an unsecured public Wi-Fi, use your mobile network to turn your phone into a hotspot.</p>

Is it safe to use airport Wi-Fi?

The fear of public Wi-Fi hotspots is something of a relic , according to experts who spoke with the Washington Post. These days, most reputable websites and apps use HTTPS. This protocol encrypts data, making it very hard for potential digital eavesdroppers to spy on you. Before leaving home, make the most of HTTPS by setting your web browser to use only that connection type.

Check to ensure your web activity uses HTTPS by looking for these letters at the start of any URL or website address. Pages that start with HTTP are not encrypted. It's more difficult to tell whether mobile apps encrypt their traffic, so surfing for entertainment is better than accessing sensitive information while out and about.

If you're checking particularly sensitive information—say, your bank account—you can upgrade your security with a trustworthy virtual private network. VPNs further encrypt your digital traffic, making it virtually impossible for any eavesdropper to access it. Still, before connecting to an unsecured public Wi-Fi, use your mobile network to turn your phone into a hotspot.

<p>The Federal Aviation Administration <a href="https://www.faa.gov/travelers/fly_safe/information">bans cell phone calls</a> on flights because of how the phone's signals interact with the plane's electronics. However, you can still use your phone if you put it in the aptly titled "airplane mode." This mode, which is standard on all modern smartphones, disables the phone's cellular connection as well as its Bluetooth and Wi-Fi capabilities. </p>  <p>It's worth keeping in mind that forgetting to turn on airplane mode is extremely unlikely to endanger your flight. As it turns out, according to a <a href="https://www.prnewswire.com/news-releases/americans-are-pro-connectivity-even-in-one-of-the-few-places-left-to-power-down-300555379.html">2017 survey by Allianz Global Assistance</a>, 2 in 5 people report leaving their cell service enabled on flights, and there's no evidence <a href="https://www.cnn.com/travel/article/cell-phones-devices-on-airplanes/index.html">signal interference from a cellphone</a> has ever caused a crash. It's still best to listen to the airline's guidance regarding cell phone use in-flight.</p>

What happens if you don't use airplane mode?

The Federal Aviation Administration bans cell phone calls on flights because of how the phone's signals interact with the plane's electronics. However, you can still use your phone if you put it in the aptly titled "airplane mode." This mode, which is standard on all modern smartphones, disables the phone's cellular connection as well as its Bluetooth and Wi-Fi capabilities. 

It's worth keeping in mind that forgetting to turn on airplane mode is extremely unlikely to endanger your flight. As it turns out, according to a 2017 survey by Allianz Global Assistance , 2 in 5 people report leaving their cell service enabled on flights, and there's no evidence signal interference from a cellphone has ever caused a crash. It's still best to listen to the airline's guidance regarding cell phone use in-flight.

<p>While not quite an out-of-date belief, "<a href="https://www.washingtonpost.com/technology/2023/04/28/public-wifi-security-risks/">juice jacking</a>"—a technique where a hacker uses public chargers to install spyware on your phone—is relatively unlikely, according to experts who spoke with the Washington Post. According to the FCC, cybersecurity experts warn that general public USB ports can have malware installed. If a public USB charging port prompts you to share data once you plug in your phone or mobile device, don't. </p>  <p>There are safer ways to charge your phone. Use your own charging cable and turn your phone off while it charges. If you want to be extra cautious, use a data-blocking adapter. These plugs connect to your USB cord and block its ability to transfer data, allowing you to charge safely.</p>

Can you trust the chargers on the plane?

While not quite an out-of-date belief, " juice jacking "—a technique where a hacker uses public chargers to install spyware on your phone—is relatively unlikely, according to experts who spoke with the Washington Post. According to the FCC, cybersecurity experts warn that general public USB ports can have malware installed. If a public USB charging port prompts you to share data once you plug in your phone or mobile device, don't.

There are safer ways to charge your phone. Use your own charging cable and turn your phone off while it charges. If you want to be extra cautious, use a data-blocking adapter. These plugs connect to your USB cord and block its ability to transfer data, allowing you to charge safely.

<p>If your phone is your boarding pass, your ride planner to your hotel, and credit card to pay for said hotel, you need it to be on. Airplane mode will save you some precious battery time by disabling a few energy-draining features of your phone. Even more useful are the battery-saving modes, which turn off certain features like email fetching or lower the phones brightness, that most phone manufacturers offer.</p>  <p>If you're still getting dinged with low-battery warnings, invest in a portable charger—a compact, spare power bank that can get you back to 100%.</p>

How can you conserve your battery on a long flight?

If your phone is your boarding pass, your ride planner to your hotel, and credit card to pay for said hotel, you need it to be on. Airplane mode will save you some precious battery time by disabling a few energy-draining features of your phone. Even more useful are the battery-saving modes, which turn off certain features like email fetching or lower the phones brightness, that most phone manufacturers offer.

If you're still getting dinged with low-battery warnings, invest in a portable charger—a compact, spare power bank that can get you back to 100%.

<p>If you've taken a flight recently, you've undoubtedly heard the rules about lithium batteries. For instance, if you check a bag with a lithium-battery-powered device, that device must be powered off. You must also keep any spare lithium batteries in your carry-on luggage.</p>  <p>The reason for all this? It's a <em>lot </em>more vital than keeping your phone in airplane mode. In the past five years, the number of <a href="https://www.cbsnews.com/news/hazardous-materials-airplanes/">fires related to lithium-ion batteries has jumped over 40%</a>, according to a CBS News analysis of Federal Aviation Administration data. Before the next time you jet off, check the <a href="https://www.faa.gov/hazmat/packsafe">FAA's website</a> for what to do with all your electronic devices.</p>  <p><em>Story editing by Carren Jao. Copy editing by Kristen Wegrzyn. Photo selection by Lacy Kerrick.</em></p>  <p>   <em>This story originally appeared on Visible and was produced and   distributed in partnership with Stacker Studio.</em>  </p>

What's with all the rules about lithium batteries?

If you've taken a flight recently, you've undoubtedly heard the rules about lithium batteries. For instance, if you check a bag with a lithium-battery-powered device, that device must be powered off. You must also keep any spare lithium batteries in your carry-on luggage.

The reason for all this? It's a lot more vital than keeping your phone in airplane mode. In the past five years, the number of fires related to lithium-ion batteries has jumped over 40% , according to a CBS News analysis of Federal Aviation Administration data. Before the next time you jet off, check the FAA's website for what to do with all your electronic devices.

Story editing by Carren Jao. Copy editing by Kristen Wegrzyn. Photo selection by Lacy Kerrick.

This story originally appeared on Visible and was produced and distributed in partnership with Stacker Studio.

More for You

Poland NATO jets

NATO Aircraft Activated After Waves of Russian Strikes

Mark Jackson says he'd cancel Lakers-Nuggets Game 4 if he were Adam Silver:

Mark Jackson says he'd cancel Lakers-Nuggets Game 4 if he were Adam Silver: "Throw in the towel"

Harvard psychologist shares 6 toxic things 'highly narcissistic' people always do in relationships: 'Don't be fooled'

Harvard psychologist shares 5 toxic things 'highly narcissistic' people always do in relationships

20 Loyal Dog Breeds That Will Never Leave Your Side

20 Loyal Dog Breeds That Will Never Leave Your Side

19 Things People Treat As Safe That Actually Are Pretty Dangerous

19 Things People Treat As Safe That Actually Are Pretty Dangerous

110 monumental movies from film history and why you need to see them

The films everyone should see at least once before they die, according to critics

Ghosts of the USA: The Most Haunted Places in America

Ghosts of the USA: The Most Haunted Places in America

6. Selling a Home Is Burdensome

7 Ways People Destroy the Value of Their Homes, According to a Real Estate Agent

(iStock)

Marriage counsellor shares one sign your relationship is really over

Martin Lewis issues warning to people choosing air fryer over oven

Martin Lewis issues warning to people choosing air fryer over oven

People Who Don’t Show Empathy Usually Have These 18 Traits

People Who Don’t Show Empathy Usually Have These 18 Traits

Jay Williams slams D'Angelo Russell for being on his phone during team huddle:

Jay Williams slams D'Angelo Russell for being on his phone during team huddle: "I don't want him on my roster"

100 best '90s movies

The best movie from the '90s isn't 'Shawshank Redemption' or 'Titanic,' based on data. Find out the top 100.

Decoding your dog's happiness

How Do I Know If My Dog Is Happy? 12 Signs of a Happy Dog

Chicago Bears Rookie Minicamp

Chicago Bears told to 'pay for their own damn stadium' after proposal has taxpayers footing $2 billion

Buffy The Vampire Slayer

The Greatest Heroines of All Time

Do I have to pay my spouse's debts when they die?

Do I have to pay off my spouse's debts when they die? Here's what you're responsible for and what you aren't after a loved one's death

People with blood type A are more likely to suffer from a stroke before 60 (photo: Collage RBC-Ukraine)

Scientists claim people with this blood type more likely to have early stroke

A woman thought her tattoos were why she was rejected for a job, but experts say personality is far more important

A woman said her tattoos got her rejected for a job, but experts say personality is far more important

Harvard psychologist: If you answer 'yes' to any of these 9 questions, you're 'more emotionally secure than most'

Harvard psychologist: If you say 'yes' to any of these 9 questions, you're 'more emotionally secure than most'

IMAGES

  1. Time Travel ??? Scientists explanation to it...

    what is time travel used for

  2. What is Time and How to Time Travel

    what is time travel used for

  3. PPT

    what is time travel used for

  4. Time travel concept infographic vector illustration

    what is time travel used for

  5. 16 Uses Of Time Travel That Will Probably Just Make You Want To Watch

    what is time travel used for

  6. A Beginner’s Guide To Time Travel

    what is time travel used for

VIDEO

  1. ‼️ TIME TRAVEL ⌚ SEASON 2

  2. The Science Behind Time Travel

  3. Is time travel possible?

  4. Basic Concepts of Time Travel

  5. The Flash TIME TRAVEL

  6. Chibi Pen and It's About Time

COMMENTS

  1. Is Time Travel Possible?

    In Summary: Yes, time travel is indeed a real thing. But it's not quite what you've probably seen in the movies. Under certain conditions, it is possible to experience time passing at a different rate than 1 second per second. And there are important reasons why we need to understand this real-world form of time travel.

  2. Time travel

    Time travel is the hypothetical activity of traveling into the past or future. Time travel is a widely recognized concept in philosophy and fiction, particularly science fiction. In fiction, time travel is typically achieved through the use of a hypothetical device known as a time machine.

  3. A beginner's guide to time travel

    A beginner's guide to time travel. Learn exactly how Einstein's theory of relativity works, and discover how there's nothing in science that says time travel is impossible. Everyone can travel in ...

  4. Can we time travel? A theoretical physicist provides some answers

    Time travel makes regular appearances in popular culture, with innumerable time travel storylines in movies, television and literature. But it is a surprisingly old idea: one can argue that the ...

  5. Time travel

    Science says time travel is possible. Here, we explore some of the theories behind time travel and the science that supports time-bending.

  6. Is time travel even possible? An astrophysicist explains the science

    Time travel is the concept of moving between different points in time, just like you move between different places. In movies, you might have seen characters using special machines, magical ...

  7. Is time travel possible? An astrophysicist explains

    Time travel is the concept of moving between different points in time, just like you move between different places. In movies, you might have seen characters using special machines, magical ...

  8. Is Time Travel Possible?

    Time traveling to the near future is easy: you're doing it right now at a rate of one second per second, and physicists say that rate can change. According to Einstein's special theory of ...

  9. Time Travel and Modern Physics

    Time travel has been a staple of science fiction. With the advent of general relativity it has been entertained by serious physicists. But, especially in the philosophy literature, there have been arguments that time travel is inherently paradoxical. The most famous paradox is the grandfather paradox: you travel back in time and kill your ...

  10. Time Travel

    Time Travel. First published Thu Nov 14, 2013; substantive revision Fri Mar 22, 2024. There is an extensive literature on time travel in both philosophy and physics. Part of the great interest of the topic stems from the fact that reasons have been given both for thinking that time travel is physically possible—and for thinking that it is ...

  11. Exploring the Reality of Time Travel: Science Fact vs ...

    Time travel, a longstanding fascination in science fiction, remains a complex and unresolved concept in science. The second law of thermodynamics suggests time can only move forward, while Einstein's theory of relativity shows time's relativity to speed. Theoretical ideas like wormholes offer potential methods, but practical challenges and ...

  12. The Scientific Possibilities of Time Travel

    Time and Relativity . Though referenced in H.G. Wells' The Time Machine (1895), the actual science of time travel didn't come into being until well into the twentieth century, as a side-effect of Albert Einstein's theory of general relativity (developed in 1915). Relativity describes the physical fabric of the universe in terms of a 4-dimensional spacetime, which includes three spatial ...

  13. Will time travel ever be possible? Science behind curving space-time

    She explained how, theoretically, time travel is possible. The mathematics behind creating curvature of space-time are solid, but trying to re-create the strict physical conditions needed to prove ...

  14. There's One Way Time Travel Could Be Possible, According to This

    One attempt at resolving time travel paradoxes is theoretical physicist Igor Dmitriyevich Novikov's self-consistency conjecture, which essentially states that you can travel to the past, but you cannot change it. According to Novikov, if I tried to destroy my time machine five minutes in the past, I would find that it is impossible to do so.

  15. Time travel: five ways that we could do it

    2. Time travel via gravity. The next method of time travel is also inspired by Einstein. According to his theory of general relativity, the stronger the gravity you feel, the slower time moves. As ...

  16. Where Does the Concept of Time Travel Come From?

    More recently, time travel has been used to examine our relationship with the past, Yaszek said, in particular in pieces written by women and people of color. Octavia Butler's 1979 novel "Kindred ...

  17. Time Travel

    Time Travel. Time travel is commonly defined with David Lewis' definition: An object time travels if and only if the difference between its departure and arrival times as measured in the surrounding world does not equal the duration of the journey undergone by the object. For example, Jane is a time traveler if she travels away from home in ...

  18. The Science of Time Travel

    The time travel process will probably involve a team of advanced scientists that can create wormholes and move them while the time traveler goes through the wormhole in outer space via a spaceship. Even though a wormhole could be used to travel to the past, the concept is still based on theory.

  19. Time travel could be possible, but only with parallel timelines

    Time travel appears to contradict logic. (Shutterstock) The other main issue is less practical, but more significant: it is the observation that time travel seems to contradict logic, in the form ...

  20. What Is Time? A Simple Explanation

    Scientific Definition. Physicists define time as the progression of events from the past to the present into the future. Basically, if a system is unchanging, it is timeless. Time can be considered to be the fourth dimension of reality, used to describe events in three-dimensional space.

  21. Time Crystals

    "Time travel would, in the theory of multiverses, have us wind up on one of these other universes, so it would not necessarily be a straight linear path forward to back for us, but a crossing ...

  22. Understanding & Using Time Travel

    Snowflake Time Travel enables accessing historical data (i.e. data that has been changed or deleted) at any point within a defined period. It serves as a powerful tool for performing the following tasks: Restoring data-related objects (tables, schemas, and databases) that might have been accidentally or intentionally deleted.

  23. Voyager 1 regains communications with NASA after inventive fix

    For the first time in five months, NASA engineers have received decipherable data from Voyager 1 after crafting a creative solution to fix a communication problem aboard humanity's most distant ...

  24. Time Travel Equation Solved By Astrophysicist

    While this idea offered an ability to manipulate time, the other problem was how to use these time loops for time travel. Professor Mallett found this time travel solution much easier than the ...

  25. What is cloud seeding and does it work?

    A torrent of rain on Tuesday flooded parts of Dubai, turned streets into rivers and shut down the world's second-busiest airport for a time — a deluge of water that triggered the question: Was ...

  26. Biden-Harris Administration Announces Final Rule Requiring Automatic

    Airlines may not substitute vouchers, travel credits, or other forms of compensation unless the passenger affirmatively chooses to accept alternative compensation. Full amount: Airlines and ticket agents must provide full refunds of the ticket purchase price, minus the value of any portion of transportation already used. The refunds must ...

  27. Movie Review

    Lucy Boynton's Harriet uses music to travel back in time to interact with her late boyfriend, David Corenswet's Max, in "The Greatest Hits." (Courtesy of Searchlight Pictures)

  28. What happens if you don't use airplane mode?

    In many ways our phones have become the keys to our lives. We use them to bank, take photos of our families, and share those pictures on social media. We use them to buy everything from clothes to ...

  29. Seder plate items and the meaning behind the foods

    Seder means "order" in Hebrew, and that should be the first clue that this traditional Passover meal has very special significance. Passover (Pesach in Hebrew) is an annual holiday marking the ...

  30. How I Travel on a Budget

    Use cash back. If you have a cash back credit card, use those extra funds to lower your travel budget. Book flights and hotels early. To find cheap places to travel, book flights and hotels in ...